3.8 KiB
3.8 KiB
Coding Assistant
using LLama.Common;
using System;
using System.Reflection;
internal class CodingAssistant
{
const string DefaultModelUri = "https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_S.gguf";
// Source paper with example prompts:
// https://doi.org/10.48550/arXiv.2308.12950
const string InstructionPrefix = "[INST]";
const string InstructionSuffix = "[/INST]";
const string SystemInstruction = "You're an intelligent, concise coding assistant. Wrap code in ``` for readability. Don't repeat yourself. Use best practice and good coding standards.";
private static string ModelsDirectory = Path.Combine(Directory.GetParent(Assembly.GetExecutingAssembly().Location)!.FullName, "Models");
public static async Task Run()
{
Console.Write("Please input your model path (if left empty, a default model will be downloaded for you): ");
var modelPath = Console.ReadLine();
if(string.IsNullOrWhiteSpace(modelPath) )
{
modelPath = await GetDefaultModel();
}
var parameters = new ModelParams(modelPath)
{
ContextSize = 4096
};
using var model = LLamaWeights.LoadFromFile(parameters);
using var context = model.CreateContext(parameters);
var executor = new InstructExecutor(context, InstructionPrefix, InstructionSuffix, null);
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine("The executor has been enabled. In this example, the LLM will follow your instructions." +
"\nIt's a 7B Code Llama, so it's trained for programming tasks like \"Write a C# function reading a file name from a given URI\" or \"Write some programming interview questions\"." +
"\nWrite 'exit' to exit");
Console.ForegroundColor = ConsoleColor.White;
var inferenceParams = new InferenceParams() {
Temperature = 0.8f,
MaxTokens = -1,
};
string instruction = $"{SystemInstruction}\n\n";
await Console.Out.WriteAsync("Instruction: ");
instruction += Console.ReadLine() ?? "Ask me for instructions.";
while (instruction != "exit")
{
Console.ForegroundColor = ConsoleColor.Green;
await foreach (var text in executor.InferAsync(instruction + System.Environment.NewLine, inferenceParams))
{
Console.Write(text);
}
Console.ForegroundColor = ConsoleColor.White;
await Console.Out.WriteAsync("Instruction: ");
instruction = Console.ReadLine() ?? "Ask me for instructions.";
}
}
private static async Task<string> GetDefaultModel()
{
var uri = new Uri(DefaultModelUri);
var modelName = uri.Segments[^1];
await Console.Out.WriteLineAsync($"The following model will be used: {modelName}");
var modelPath = Path.Combine(ModelsDirectory, modelName);
if(!Directory.Exists(ModelsDirectory))
{
Directory.CreateDirectory(ModelsDirectory);
}
if (File.Exists(modelPath))
{
await Console.Out.WriteLineAsync($"Existing model found, using {modelPath}");
}
else
{
await Console.Out.WriteLineAsync($"Model not found locally, downloading {DefaultModelUri}...");
using var http = new HttpClient();
await using var downloadStream = await http.GetStreamAsync(uri);
await using var fileStream = new FileStream(modelPath, FileMode.Create, FileAccess.Write);
await downloadStream.CopyToAsync(fileStream);
await Console.Out.WriteLineAsync($"Model downloaded and saved to {modelPath}");
}
return modelPath;
}
}