216 lines
7.1 KiB
Markdown
216 lines
7.1 KiB
Markdown
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
-->
|
||
|
||
# 使用 🤗 PEFT 加载adapters
|
||
|
||
[[open-in-colab]]
|
||
|
||
[参数高效微调(PEFT)方法](https://huggingface.co/blog/peft)在微调过程中冻结预训练模型的参数,并在其顶部添加少量可训练参数(adapters)。adapters被训练以学习特定任务的信息。这种方法已被证明非常节省内存,同时具有较低的计算使用量,同时产生与完全微调模型相当的结果。
|
||
|
||
使用PEFT训练的adapters通常比完整模型小一个数量级,使其方便共享、存储和加载。
|
||
|
||
<div class="flex flex-col justify-center">
|
||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
|
||
<figcaption class="text-center">与完整尺寸的模型权重(约为700MB)相比,存储在Hub上的OPTForCausalLM模型的adapter权重仅为~6MB。</figcaption>
|
||
</div>
|
||
|
||
如果您对学习更多关于🤗 PEFT库感兴趣,请查看[文档](https://huggingface.co/docs/peft/index)。
|
||
|
||
|
||
## 设置
|
||
|
||
首先安装 🤗 PEFT:
|
||
|
||
```bash
|
||
pip install peft
|
||
```
|
||
|
||
如果你想尝试全新的特性,你可能会有兴趣从源代码安装这个库:
|
||
|
||
```bash
|
||
pip install git+https://github.com/huggingface/peft.git
|
||
```
|
||
## 支持的 PEFT 模型
|
||
|
||
Transformers原生支持一些PEFT方法,这意味着你可以加载本地存储或在Hub上的adapter权重,并使用几行代码轻松运行或训练它们。以下是受支持的方法:
|
||
|
||
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
|
||
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
|
||
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
|
||
|
||
如果你想使用其他PEFT方法,例如提示学习或提示微调,或者关于通用的 🤗 PEFT库,请参阅[文档](https://huggingface.co/docs/peft/index)。
|
||
|
||
## 加载 PEFT adapter
|
||
|
||
要从huggingface的Transformers库中加载并使用PEFTadapter模型,请确保Hub仓库或本地目录包含一个`adapter_config.json`文件和adapter权重,如上例所示。然后,您可以使用`AutoModelFor`类加载PEFT adapter模型。例如,要为因果语言建模加载一个PEFT adapter模型:
|
||
|
||
1. 指定PEFT模型id
|
||
2. 将其传递给[`AutoModelForCausalLM`]类
|
||
|
||
```py
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
peft_model_id = "ybelkada/opt-350m-lora"
|
||
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
|
||
```
|
||
|
||
<Tip>
|
||
|
||
你可以使用`AutoModelFor`类或基础模型类(如`OPTForCausalLM`或`LlamaForCausalLM`)来加载一个PEFT adapter。
|
||
|
||
|
||
</Tip>
|
||
|
||
您也可以通过`load_adapter`方法来加载 PEFT adapter。
|
||
|
||
```py
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
model_id = "facebook/opt-350m"
|
||
peft_model_id = "ybelkada/opt-350m-lora"
|
||
|
||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||
model.load_adapter(peft_model_id)
|
||
```
|
||
|
||
## 基于8bit或4bit进行加载
|
||
|
||
`bitsandbytes`集成支持8bit和4bit精度数据类型,这对于加载大模型非常有用,因为它可以节省内存(请参阅`bitsandbytes`[指南](./quantization#bitsandbytes-integration)以了解更多信息)。要有效地将模型分配到您的硬件,请在[`~PreTrainedModel.from_pretrained`]中添加`load_in_8bit`或`load_in_4bit`参数,并将`device_map="auto"`设置为:
|
||
|
||
```py
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
peft_model_id = "ybelkada/opt-350m-lora"
|
||
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
|
||
```
|
||
|
||
## 添加新的adapter
|
||
|
||
你可以使用[`~peft.PeftModel.add_adapter`]方法为一个已有adapter的模型添加一个新的adapter,只要新adapter的类型与当前adapter相同即可。例如,如果你有一个附加到模型上的LoRA adapter:
|
||
|
||
```py
|
||
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
|
||
from peft import PeftConfig
|
||
|
||
model_id = "facebook/opt-350m"
|
||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||
|
||
lora_config = LoraConfig(
|
||
target_modules=["q_proj", "k_proj"],
|
||
init_lora_weights=False
|
||
)
|
||
|
||
model.add_adapter(lora_config, adapter_name="adapter_1")
|
||
```
|
||
|
||
|
||
添加一个新的adapter:
|
||
|
||
```py
|
||
# attach new adapter with same config
|
||
model.add_adapter(lora_config, adapter_name="adapter_2")
|
||
```
|
||
现在您可以使用[`~peft.PeftModel.set_adapter`]来设置要使用的adapter。
|
||
|
||
```py
|
||
# use adapter_1
|
||
model.set_adapter("adapter_1")
|
||
output = model.generate(**inputs)
|
||
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
|
||
|
||
# use adapter_2
|
||
model.set_adapter("adapter_2")
|
||
output_enabled = model.generate(**inputs)
|
||
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
|
||
```
|
||
|
||
## 启用和禁用adapters
|
||
一旦您将adapter添加到模型中,您可以启用或禁用adapter模块。要启用adapter模块:
|
||
|
||
|
||
```py
|
||
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
|
||
from peft import PeftConfig
|
||
|
||
model_id = "facebook/opt-350m"
|
||
adapter_model_id = "ybelkada/opt-350m-lora"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
text = "Hello"
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
|
||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||
peft_config = PeftConfig.from_pretrained(adapter_model_id)
|
||
|
||
# to initiate with random weights
|
||
peft_config.init_lora_weights = False
|
||
|
||
model.add_adapter(peft_config)
|
||
model.enable_adapters()
|
||
output = model.generate(**inputs)
|
||
```
|
||
要禁用adapter模块:
|
||
|
||
```py
|
||
model.disable_adapters()
|
||
output = model.generate(**inputs)
|
||
```
|
||
## 训练一个 PEFT adapter
|
||
|
||
PEFT适配器受[`Trainer`]类支持,因此您可以为您的特定用例训练适配器。它只需要添加几行代码即可。例如,要训练一个LoRA adapter:
|
||
|
||
|
||
<Tip>
|
||
|
||
如果你不熟悉如何使用[`Trainer`]微调模型,请查看[微调预训练模型](training)教程。
|
||
|
||
</Tip>
|
||
|
||
1. 使用任务类型和超参数定义adapter配置(参见[`~peft.LoraConfig`]以了解超参数的详细信息)。
|
||
|
||
```py
|
||
from peft import LoraConfig
|
||
|
||
peft_config = LoraConfig(
|
||
lora_alpha=16,
|
||
lora_dropout=0.1,
|
||
r=64,
|
||
bias="none",
|
||
task_type="CAUSAL_LM",
|
||
)
|
||
```
|
||
|
||
2. 将adapter添加到模型中。
|
||
|
||
```py
|
||
model.add_adapter(peft_config)
|
||
```
|
||
|
||
3. 现在可以将模型传递给[`Trainer`]了!
|
||
|
||
```py
|
||
trainer = Trainer(model=model, ...)
|
||
trainer.train()
|
||
```
|
||
|
||
要保存训练好的adapter并重新加载它:
|
||
|
||
```py
|
||
model.save_pretrained(save_dir)
|
||
model = AutoModelForCausalLM.from_pretrained(save_dir)
|
||
```
|
||
|
||
<!--
|
||
TODO: (@younesbelkada @stevhliu)
|
||
- Link to PEFT docs for further details
|
||
- Trainer
|
||
- 8-bit / 4-bit examples ?
|
||
-->
|