transformers/docs/source/zh/peft.md

7.1 KiB
Raw Permalink Blame History

使用 🤗 PEFT 加载adapters

open-in-colab

参数高效微调PEFT方法在微调过程中冻结预训练模型的参数并在其顶部添加少量可训练参数adapters。adapters被训练以学习特定任务的信息。这种方法已被证明非常节省内存同时具有较低的计算使用量同时产生与完全微调模型相当的结果。

使用PEFT训练的adapters通常比完整模型小一个数量级使其方便共享、存储和加载。

与完整尺寸的模型权重约为700MB相比存储在Hub上的OPTForCausalLM模型的adapter权重仅为~6MB。

如果您对学习更多关于🤗 PEFT库感兴趣请查看文档

设置

首先安装 🤗 PEFT

pip install peft

如果你想尝试全新的特性,你可能会有兴趣从源代码安装这个库:

pip install git+https://github.com/huggingface/peft.git

支持的 PEFT 模型

Transformers原生支持一些PEFT方法这意味着你可以加载本地存储或在Hub上的adapter权重并使用几行代码轻松运行或训练它们。以下是受支持的方法

如果你想使用其他PEFT方法例如提示学习或提示微调或者关于通用的 🤗 PEFT库请参阅文档

加载 PEFT adapter

要从huggingface的Transformers库中加载并使用PEFTadapter模型请确保Hub仓库或本地目录包含一个adapter_config.json文件和adapter权重如上例所示。然后您可以使用AutoModelFor类加载PEFT adapter模型。例如要为因果语言建模加载一个PEFT adapter模型

  1. 指定PEFT模型id
  2. 将其传递给[AutoModelForCausalLM]类
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)

你可以使用AutoModelFor类或基础模型类(如OPTForCausalLMLlamaForCausalLM来加载一个PEFT adapter。

您也可以通过load_adapter方法来加载 PEFT adapter。

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"

model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)

基于8bit或4bit进行加载

bitsandbytes集成支持8bit和4bit精度数据类型这对于加载大模型非常有用因为它可以节省内存请参阅bitsandbytes指南以了解更多信息)。要有效地将模型分配到您的硬件,请在[~PreTrainedModel.from_pretrained]中添加load_in_8bitload_in_4bit参数,并将device_map="auto"设置为:

from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)

添加新的adapter

你可以使用[~peft.PeftModel.add_adapter]方法为一个已有adapter的模型添加一个新的adapter只要新adapter的类型与当前adapter相同即可。例如如果你有一个附加到模型上的LoRA adapter

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig

model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)

lora_config = LoraConfig(
    target_modules=["q_proj", "k_proj"],
    init_lora_weights=False
)

model.add_adapter(lora_config, adapter_name="adapter_1")

添加一个新的adapter

# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")

现在您可以使用[~peft.PeftModel.set_adapter]来设置要使用的adapter。

# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))

# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))

启用和禁用adapters

一旦您将adapter添加到模型中您可以启用或禁用adapter模块。要启用adapter模块

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig

model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")

model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)

# to initiate with random weights
peft_config.init_lora_weights = False

model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)

要禁用adapter模块

model.disable_adapters()
output = model.generate(**inputs)

训练一个 PEFT adapter

PEFT适配器受[Trainer]类支持因此您可以为您的特定用例训练适配器。它只需要添加几行代码即可。例如要训练一个LoRA adapter

如果你不熟悉如何使用[Trainer]微调模型,请查看微调预训练模型教程。

  1. 使用任务类型和超参数定义adapter配置参见[~peft.LoraConfig]以了解超参数的详细信息)。
from peft import LoraConfig

peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
)
  1. 将adapter添加到模型中。
model.add_adapter(peft_config)
  1. 现在可以将模型传递给[Trainer]了!
trainer = Trainer(model=model, ...)
trainer.train()

要保存训练好的adapter并重新加载它

model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)