谢谢补充 | Merge pull request #487 from yiranxiada/y-branch changes for test() in adaboost.py
谢谢补充 | Merge pull request #487 from yiranxiada/y-branch
changes for test() in adaboost.py
组织介绍
欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远
第一部分 入门介绍
第二部分 机器翻译
第三部分 篇章分析
第四部分 UNIT-语言理解与交互技术
学习过程中-内心复杂的变化!!!
自从学习NLP以后,才发现国内与国外的典型区别: 1. 对资源的态度是完全相反的: 1) 国内:就好像为了名气,举办工作装逼的会议,就是没有干货,全部都是象征性的PPT介绍,不是针对在做的各位 2)国外:就好像是为了推动nlp进步一样,分享者各种干货资料和具体的实现。(特别是: python自然语言处理) 2. 论文的实现: 1) 各种高大上的论文实现,却还是没看到一个像样的GitHub项目!(可能我的搜索能力差了点,一直没找到) 2)国外就不举例了,我看不懂! 3. 开源的框架 1)国外的开源框架: tensorflow/pytorch 文档+教程+视频(官方提供) 2) 国内的开源框架: 额额,还真举例不出来!但是牛逼吹得不比国外差!(MXNet虽然有众多华人参与开发,但不能算是国内开源框架。基于MXNet的动手学深度学习(https://zh.diveintodeeplearning.org)中文教程,已经由沐神(李沐)以及阿斯顿·张讲授录制,公开发布。 文档+第一季教程+视频) 每一次深入都要去翻墙,每一次深入都要Google,每一次看着国内的说:哈工大、讯飞、中科大、百度、阿里 多牛逼,但是资料还是得国外去找! 有时候真的挺狠的!真的有点瞧不起自己国内的技术环境! 当然谢谢国内很多博客大佬,特别是一些入门的Demo和基本概念。【深入的水平有限,没看懂】
文本分类是指标记句子或文档,例如电子邮件垃圾邮件分类和情感分析。
下面是一些很好的初学者文本分类数据集。
有关更多信息,请参阅帖子: 单标签文本分类的数据集。
情感分析
比赛地址: https://www.kaggle.com/c/word2vec-nlp-tutorial
通过AUC 来评估模型的效果
语言建模涉及开发一种统计模型,用于预测句子中的下一个单词或一个单词中的下一个单词。它是语音识别和机器翻译等任务中的前置任务。
它是语音识别和机器翻译等任务中的前置任务。
下面是一些很好的初学者语言建模数据集。
新词发现
句子相似度识别
文本纠错
mage字幕是为给定图像生成文本描述的任务。
下面是一些很好的初学者图像字幕数据集。
探索图像字幕数据集,2016年
机器翻译是将文本从一种语言翻译成另一种语言的任务。
下面是一些很好的初学者机器翻译数据集。
统计机器翻译
机器翻译
问答是一项任务,其中提供了一个句子或文本样本,从中提出问题并且必须回答问题。
下面是一些很好的初学者问题回答数据集。
数据集:我如何获得问答网站的语料库,如Quora或Yahoo Answers或Stack Overflow来分析答案质量?
语音识别是将口语的音频转换为人类可读文本的任务。
下面是一些很好的初学者语音识别数据集。
文档摘要是创建较大文档的简短有意义描述的任务。
下面是一些很好的初学者文档摘要数据集。
文档理解会议(DUC)任务。 在哪里可以找到用于文本摘要的良好数据集?
命名实体识别
文本摘要
如果您希望更深入,本节提供了其他数据集列表。
知乎问答-爆炸啦-机器学习该怎么入门?
当然我知道,第一句就会被吐槽,因为科班出身的人,不屑的吐了一口唾沫,说傻X,还评论 Andrew Ng 的视频。。
我还知道还有一部分人,看 Andrew Ng 的视频就是看不懂,那神秘的数学推导,那迷之微笑的英文版的教学,我何尝又不是这样走过来的?? 我的心可能比你们都痛,因为我在网上收藏过上10部《机器学习》相关视频,外加国内本土风格的教程:7月+小象 等等,我都很难去听懂,直到有一天,被一个百度的高级算法分析师推荐说:《机器学习实战》还不错,通俗易懂,你去试试??
我试了试,还好我的Python基础和调试能力还不错,基本上代码都调试过一遍,很多高大上的 “理论+推导”,在我眼中变成了几个 “加减乘除+循环”,我想这不就是像我这样的程序员想要的入门教程么?
很多程序员说机器学习 TM 太难学了,是的,真 TM 难学,我想最难的是:没有一本像《机器学习实战》那样的作者愿意以程序员 Coding 角度去给大家讲解!!
最近几天,GitHub 涨了 300颗 star,加群的200人, 现在还在不断的增加++,我想大家可能都是感同身受吧!
很多想入门新手就是被忽悠着收藏收藏再收藏,但是最后还是什么都没有学到,也就是”资源收藏家”,也许新手要的就是 MachineLearning(机器学习) 学习路线图。没错,我可以给你们的一份,因为我们还通过视频记录下来我们的学习过程。水平当然也有限,不过对于新手入门,绝对没问题,如果你还不会,那算我输!!
视频怎么看?
循序渐进大体介绍:机器学习初学者建议 | ApacheCN
干货内容实际操作:MachineLearning(机器学习) 学习路线图
【免费】数学教学视频 - 可汗学院 入门篇
机器学习视频 - ApacheCN 教学版
【免费】机器/深度学习视频 - 吴恩达
Ml 第一期 (2017-02-27)
Ml 第二期 (2017-08-14)
Ml 第三期 (2018-04-16)
Ml 第一届 (2017-09-01)
Ml 第二届 (2018-07-04)
Ml 第三届 (2019-01-01)
欢迎贡献者不断的追加
加入方式
资料来源:
以各项目协议为准。
ApacheCN 账号下没有协议的项目,一律视为 CC BY-NC-SA 4.0。
©Copyright 2023 CCF 开源发展委员会 Powered by Trustie& IntelliDE 京ICP备13000930号
AI Learning
@分析
244970749
深度学习 DeepLearning
自然语言处理 NLP 学习
1.使用场景 (百度公开课)
2.相关结构
学习过程中-内心复杂的变化!!!
中文分词:
1.文本分类(Text Classification)
文本分类是指标记句子或文档,例如电子邮件垃圾邮件分类和情感分析。
下面是一些很好的初学者文本分类数据集。
有关更多信息,请参阅帖子: 单标签文本分类的数据集。
比赛地址: https://www.kaggle.com/c/word2vec-nlp-tutorial
通过AUC 来评估模型的效果
2.语言模型(Language Modeling)
语言建模涉及开发一种统计模型,用于预测句子中的下一个单词或一个单词中的下一个单词。它是语音识别和机器翻译等任务中的前置任务。
它是语音识别和机器翻译等任务中的前置任务。
下面是一些很好的初学者语言建模数据集。
3.图像字幕(Image Captioning)
mage字幕是为给定图像生成文本描述的任务。
下面是一些很好的初学者图像字幕数据集。
探索图像字幕数据集,2016年
4.机器翻译(Machine Translation)
机器翻译是将文本从一种语言翻译成另一种语言的任务。
下面是一些很好的初学者机器翻译数据集。
统计机器翻译
5.问答系统(Question Answering)
问答是一项任务,其中提供了一个句子或文本样本,从中提出问题并且必须回答问题。
下面是一些很好的初学者问题回答数据集。
数据集:我如何获得问答网站的语料库,如Quora或Yahoo Answers或Stack Overflow来分析答案质量?
6.语音识别(Speech Recognition)
语音识别是将口语的音频转换为人类可读文本的任务。
下面是一些很好的初学者语音识别数据集。
7.自动文摘(Document Summarization)
文档摘要是创建较大文档的简短有意义描述的任务。
下面是一些很好的初学者文档摘要数据集。
文档理解会议(DUC)任务。 在哪里可以找到用于文本摘要的良好数据集?
Graph图计算【慢慢更新】
进一步阅读
如果您希望更深入,本节提供了其他数据集列表。
网站视频
当然我知道,第一句就会被吐槽,因为科班出身的人,不屑的吐了一口唾沫,说傻X,还评论 Andrew Ng 的视频。。
我还知道还有一部分人,看 Andrew Ng 的视频就是看不懂,那神秘的数学推导,那迷之微笑的英文版的教学,我何尝又不是这样走过来的?? 我的心可能比你们都痛,因为我在网上收藏过上10部《机器学习》相关视频,外加国内本土风格的教程:7月+小象 等等,我都很难去听懂,直到有一天,被一个百度的高级算法分析师推荐说:《机器学习实战》还不错,通俗易懂,你去试试??
我试了试,还好我的Python基础和调试能力还不错,基本上代码都调试过一遍,很多高大上的 “理论+推导”,在我眼中变成了几个 “加减乘除+循环”,我想这不就是像我这样的程序员想要的入门教程么?
很多程序员说机器学习 TM 太难学了,是的,真 TM 难学,我想最难的是:没有一本像《机器学习实战》那样的作者愿意以程序员 Coding 角度去给大家讲解!!
最近几天,GitHub 涨了 300颗 star,加群的200人, 现在还在不断的增加++,我想大家可能都是感同身受吧!
很多想入门新手就是被忽悠着收藏收藏再收藏,但是最后还是什么都没有学到,也就是”资源收藏家”,也许新手要的就是 MachineLearning(机器学习) 学习路线图。没错,我可以给你们的一份,因为我们还通过视频记录下来我们的学习过程。水平当然也有限,不过对于新手入门,绝对没问题,如果你还不会,那算我输!!
循序渐进大体介绍:机器学习初学者建议 | ApacheCN
干货内容实际操作:MachineLearning(机器学习) 学习路线图
项目负责人
项目贡献者
群管理员换届
欢迎贡献者不断的追加
免责声明 - 【只供学习参考】
资料来源:
赞助我们
协议
以各项目协议为准。
ApacheCN 账号下没有协议的项目,一律视为 CC BY-NC-SA 4.0。
Organization