mirror of https://gitlab.com/QEF/q-e.git
51 lines
3.1 KiB
Plaintext
51 lines
3.1 KiB
Plaintext
========================================================================================
|
|
= Paper describing the HP code: =
|
|
= - I. Timrov, N. Marzari and M. Cococcioni, =
|
|
= "HP - A code for the calculation of Hubbard parameters using density-functional =
|
|
= perturbation theory", Comput. Phys. Commun. 279, 108455 (2022); arxiv:2203.15684 =
|
|
========================================================================================
|
|
= The calculation of Hubbard parameters using the HP code is based on DFPT: =
|
|
= - I. Timrov, N. Marzari and M. Cococcioni, =
|
|
= "Hubbard parameters from density-functional perturbation theory", =
|
|
= Phys. Rev. B 98, 085127 (2018); arXiv:1805.01805 =
|
|
= - I. Timrov, N. Marzari and M. Cococcioni, =
|
|
= "Self-consistent Hubbard parameters from density-functional perturbation theory =
|
|
= in the ultrasoft and projector-augmented wave formulations", =
|
|
= Phys. Rev. B 103, 045141 (2021); arXiv:2011.03271 =
|
|
========================================================================================
|
|
|
|
Some examples of the application of the HP code:
|
|
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
|
|
"Self-consistent site-dependent DFT+U study of stoichiometric and defective SrMnO3",
|
|
Phys. Rev. B 99, 094102 (2019); arXiv:1811.10858
|
|
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
|
|
"Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3",
|
|
Phys. Rev. Research 2, 023313 (2020); arXiv:2004.04142
|
|
- I. Timrov, P. Agrawal, X. Zhang, S. Erat, R. Liu, A. Braun, M. Cococcioni,
|
|
M. Calandra, N. Marzari, and D. Passerone,
|
|
"Electronic structure of pristine and Ni-substituted LaFeO3 from near edge x-ray
|
|
absorption fine structure experiments and first-principles simulations",
|
|
Phys. Rev. Research 2, 033265 (2020); arXiv:2004.04142
|
|
- I. Timrov, F. Aquilante, L. Binci, M. Cococcioni, and N. Marzari,
|
|
"Pulay forces in density-functional theory with extended Hubbard functionals:
|
|
From nonorthogonalized to orthogonalized manifolds",
|
|
Phys. Rev. B 102, 235159 (2020); arXiv:2010.13485
|
|
- N.E. Kirchner-Hall et al.,
|
|
"Extensive Benchmarking of DFT+U Calculations for Predicting Band Gaps",
|
|
Appl. Sci. 11, 2395 (2021)
|
|
- Y. Xiong et al.,
|
|
"Optimizing accuracy and efficacy in data-driven materials discovery for the solar
|
|
production of hydrogen",
|
|
Energy Environ. Sci. 14, 2335 (2021)
|
|
- J.-J. Zhou et al.,
|
|
"Ab Initio Electron-Phonon Interactions in Correlated Electron Systems",
|
|
Phys. Rev. Lett. 127, 126404 (2021)
|
|
- R. Mahajan et al.,
|
|
"Importance of intersite Hubbard interactions in beta-MnO2: A first-principles DFT+U+V study",
|
|
Phys. Rev. Materials 5, 104402 (2021)
|
|
|
|
Note: The DFPT approach (as the linear-response cDFT approach) has a limitation:
|
|
it is applicable only to open-shell systems. For more details see
|
|
K. Yu and E.A. Carter, J. Chem. Phys. 140, 121105 (2014).
|
|
|