mirror of https://gitlab.com/QEF/q-e.git
6ff4292e34 | ||
---|---|---|
.. | ||
INPUT_HP.def | ||
INPUT_HP.html | ||
INPUT_HP.txt | ||
Makefile | ||
README |
README
======================================================================================== = Paper describing the HP code: = = - I. Timrov, N. Marzari and M. Cococcioni, = = "HP - A code for the calculation of Hubbard parameters using density-functional = = perturbation theory", Comput. Phys. Commun. 279, 108455 (2022); arxiv:2203.15684 = ======================================================================================== = The calculation of Hubbard parameters using the HP code is based on DFPT: = = - I. Timrov, N. Marzari and M. Cococcioni, = = "Hubbard parameters from density-functional perturbation theory", = = Phys. Rev. B 98, 085127 (2018); arXiv:1805.01805 = = - I. Timrov, N. Marzari and M. Cococcioni, = = "Self-consistent Hubbard parameters from density-functional perturbation theory = = in the ultrasoft and projector-augmented wave formulations", = = Phys. Rev. B 103, 045141 (2021); arXiv:2011.03271 = ======================================================================================== Some examples of the application of the HP code: - C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer, "Self-consistent site-dependent DFT+U study of stoichiometric and defective SrMnO3", Phys. Rev. B 99, 094102 (2019); arXiv:1811.10858 - C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer, "Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3", Phys. Rev. Research 2, 023313 (2020); arXiv:2004.04142 - I. Timrov, P. Agrawal, X. Zhang, S. Erat, R. Liu, A. Braun, M. Cococcioni, M. Calandra, N. Marzari, and D. Passerone, "Electronic structure of pristine and Ni-substituted LaFeO3 from near edge x-ray absorption fine structure experiments and first-principles simulations", Phys. Rev. Research 2, 033265 (2020); arXiv:2004.04142 - I. Timrov, F. Aquilante, L. Binci, M. Cococcioni, and N. Marzari, "Pulay forces in density-functional theory with extended Hubbard functionals: From nonorthogonalized to orthogonalized manifolds", Phys. Rev. B 102, 235159 (2020); arXiv:2010.13485 - N.E. Kirchner-Hall et al., "Extensive Benchmarking of DFT+U Calculations for Predicting Band Gaps", Appl. Sci. 11, 2395 (2021) - Y. Xiong et al., "Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen", Energy Environ. Sci. 14, 2335 (2021) - J.-J. Zhou et al., "Ab Initio Electron-Phonon Interactions in Correlated Electron Systems", Phys. Rev. Lett. 127, 126404 (2021) - R. Mahajan et al., "Importance of intersite Hubbard interactions in beta-MnO2: A first-principles DFT+U+V study", Phys. Rev. Materials 5, 104402 (2021) Note: The DFPT approach (as the linear-response cDFT approach) has a limitation: it is applicable only to open-shell systems. For more details see K. Yu and E.A. Carter, J. Chem. Phys. 140, 121105 (2014).