phonopy/doc/dynamic-structure-factor.md

8.5 KiB

(dynamic_structure_factor)=

Dynamic structure factor

From Eq. (3.120) in the book "Thermal of Neutron Scattering", coherent one-phonon dynamic structure factor is given as

S(\mathbf{Q}, \nu, \omega)^{+1\text{ph}} =
\frac{k'}{k} \frac{N}{\hbar}
\sum_\mathbf{q} |F(\mathbf{Q}, -\mathbf{q}\nu)|^2
(n_{\mathbf{q}\nu} + 1) \delta(\omega - \omega_{\mathbf{q}\nu})
\Delta(\mathbf{Q} - \mathbf{q}),
S(\mathbf{Q}, \nu, \omega)^{-1\text{ph}} = \frac{k'}{k} \frac{N}{\hbar}
\sum_\mathbf{q} |F(\mathbf{Q}, \mathbf{q}\nu)|^2 n_{\mathbf{q}\nu}
\delta(\omega + \omega_{\mathbf{q}\nu}) \Delta(\mathbf{Q} + \mathbf{q}),

with

F(\mathbf{Q}, \mathbf{q}\nu) = \sum_j \sqrt{\frac{\hbar}{2 m_j
\omega_{\mathbf{q}\nu}}} \bar{b}_j \exp\left[ -\frac{1}{2} \langle
|\mathbf{Q}\cdot\mathbf{u}(j0)|^2 \rangle \right]
e^{i(\mathbf{Q} + \mathbf{q}) \cdot \mathbf{r}_{j0}}
\mathbf{Q} \cdot\mathbf{e}(j, \mathbf{q}\nu).

where {math}\mathbf{Q} is the scattering vector defined as {math}\mathbf{Q} = \mathbf{k} - \mathbf{k}' with incident wave vector {math}\mathbf{k} and final wavevector {math}\mathbf{k}'. Similarly, {math}\omega=1/\hbar (E-E') where {math}E and {math}E' are the energies of the incident and final particles. These follow the convention of the book "Thermal of Neutron Scattering". In some other text books, their definitions have opposite sign. {math}\Delta(\mathbf{Q-q}) is defined so that {math}\Delta(\mathbf{Q-q})=1 with {math}\mathbf{Q}-\mathbf{q}=\mathbf{G} and {math}\Delta(\mathbf{Q-q})=0 with {math}\mathbf{Q}-\mathbf{q} \neq \mathbf{G} where {math}\mathbf{G} is any reciprocal lattice vector. Other variables are refered to {ref}formulations page. Note that the phase convention of the dynamical matrix given {ref}here <dynacmial_matrix_theory> is used. This changes the representation of the phase factor in {math}F(\mathbf{Q}, \mathbf{q}\nu) from that given in the book "Thermal of Neutron Scattering", but the additional term {math}\exp(i\mathbf{q}\cdot\mathbf{r}_{j0}) comes from the different phase convention of the dynamical matrix or equivalently the eigenvector. For inelastic neutron scattering, {math}\bar{b}_j is the average scattering length over isotopes and spins. For inelastic X-ray scattering, {math}\bar{b}_j is replaced by atomic form factor {math}f_j(\mathbf{Q}) and {math}k'/k \sim 1.

Currently only {math}S(\mathbf{Q}, \nu, \omega)^{+1\text{ph}} is calcualted with setting {math}N k'/k = 1 and the physical unit is {math}\text{m}^2/\text{J} when {math}\bar{b}_j is given in Angstrom.

Usage

Currently this feature is usable only from API. The following example runs with the input files in example/NaCl.

import numpy as np
import phonopy
from phonopy.phonon.degeneracy import degenerate_sets
from phonopy.spectrum.dynamic_structure_factor import atomic_form_factor_WK1995
from phonopy.units import THzToEv


def get_AFF_func(f_params):
    def func(symbol, s):
        return atomic_form_factor_WK1995(s, f_params[symbol])

    return func


def run(
    phonon, Qpoints, temperature, atomic_form_factor_func=None, scattering_lengths=None
):
    # Transformation to the Q-points in reciprocal primitive basis vectors
    Q_prim = np.dot(Qpoints, phonon.primitive_matrix)
    # Q_prim must be passed to the phonopy dynamical structure factor code.
    phonon.run_dynamic_structure_factor(
        Q_prim,
        temperature,
        atomic_form_factor_func=atomic_form_factor_func,
        scattering_lengths=scattering_lengths,
        freq_min=1e-3,
    )
    dsf = phonon.dynamic_structure_factor
    q_cartesian = np.dot(dsf.qpoints, np.linalg.inv(phonon.primitive.cell).T)
    distances = np.sqrt((q_cartesian ** 2).sum(axis=1))

    print("# [1] Distance from Gamma point,")
    print("# [2-4] Q-points in cubic reciprocal space, ")
    print("# [5-8] 4 band frequencies in meV (becaues of degeneracy), ")
    print("# [9-12] 4 dynamic structure factors.")
    print("# For degenerate bands, dynamic structure factors are summed.")
    print("")

    # Use as iterator
    for Q, d, f, S in zip(
        Qpoints, distances, dsf.frequencies, dsf.dynamic_structure_factors
    ):
        bi_sets = degenerate_sets(f)  # to treat for band degeneracy
        text = "%f  " % d
        text += "%f %f %f  " % tuple(Q)
        text += " ".join(
            ["%f" % (f[bi].sum() * THzToEv * 1000 / len(bi)) for bi in bi_sets]
        )
        text += "  "
        text += " ".join(["%f" % (S[bi].sum()) for bi in bi_sets])
        print(text)


if __name__ == "__main__":
    phonon = phonopy.load("phonopy_disp.yaml")

    # Q-points in reduced coordinates wrt cubic reciprocal space
    Qpoints = [
        [2.970000, -2.970000, 2.970000],
        [2.950000, 2.950000, -2.950000],
        [2.930000, -2.930000, 2.930000],
        [2.905000, -2.905000, 2.905000],
        [2.895000, -2.895000, 2.895000],
        [2.880000, -2.880000, 2.880000],
        [2.850000, -2.850000, 2.850000],
        [2.810000, -2.810000, 2.810000],
        [2.735000, -2.735000, 2.735000],
        [2.660000, -2.660000, 2.660000],
        [2.580000, -2.580000, 2.580000],
        [2.500000, -2.500000, 2.500000],
    ]

    # Mesh sampling phonon calculation is needed for Debye-Waller factor.
    # This must be done with is_mesh_symmetry=False and with_eigenvectors=True.
    mesh = [11, 11, 11]
    phonon.run_mesh(mesh, is_mesh_symmetry=False, with_eigenvectors=True)
    temperature = 300

    IXS = True

    if IXS:
        # For IXS, atomic form factor is needed and given as a function as
        # a parameter.
        # D. Waasmaier and A. Kirfel, Acta Cryst. A51, 416 (1995)
        # f(s) = \sum_i a_i \exp((-b_i s^2) + c
        # s = |k' - k|/2 = |Q|/2 is in angstron^-1, where k, k', Q are given
        # without 2pi.
        # a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, c
        f_params = {
            "Na": [
                3.148690,
                2.594987,
                4.073989,
                6.046925,
                0.767888,
                0.070139,
                0.995612,
                14.1226457,
                0.968249,
                0.217037,
                0.045300,
            ],  # 1+
            "Cl": [
                1.061802,
                0.144727,
                7.139886,
                1.171795,
                6.524271,
                19.467656,
                2.355626,
                60.320301,
                35.829404,
                0.000436,
                -34.916604,
            ],
        }  # 1-
        AFF_func = get_AFF_func(f_params)
        run(phonon, Qpoints, temperature, atomic_form_factor_func=AFF_func)
    else:
        # For INS, scattering length has to be given.
        # The following values is obtained at (Coh b)
        # https://www.nist.gov/ncnr/neutron-scattering-lengths-list
        run(phonon, Qpoints, temperature, scattering_lengths={"Na": 3.63, "Cl": 9.5770})

The output of the script is like below.

# [1] Distance from Gamma point,
# [2-4] Q-points in cubic reciprocal space,
# [5-8] 4 band frequencies in meV (becaues of degeneracy),
# [9-12] 4 dynamic structure factors.
# For degenerate bands, dynamic structure factors are summed.

0.009132  2.970000 -2.970000 2.970000  0.990754 1.650964 19.068021 30.556134  0.000000 989.100086 0.000000 61.862136
0.015219  2.950000 2.950000 -2.950000  1.649715 2.748809 19.026010 30.498821  0.000000 359.101167 0.000000 62.419653
0.021307  2.930000 -2.930000 2.930000  2.306414 3.842450 18.964586 30.414407  0.000000 184.887464 0.000000 63.060431
0.028917  2.905000 -2.905000 2.905000  3.122869 5.200999 18.863220 30.273465  0.000000 101.732633 0.000000 63.969683
0.031961  2.895000 -2.895000 2.895000  3.447777 5.741079 18.815865 30.206915  0.000000 83.809696 0.000000 64.363976
0.036526  2.880000 -2.880000 2.880000  3.933076 6.546928 18.738420 30.097099  0.000000 64.884831 0.000000 64.984545
0.045658  2.850000 -2.850000 2.850000  4.895250 8.140375 18.563906 29.845228  0.000000 42.801713 0.000000 66.313660
0.057833  2.810000 -2.810000 2.810000  6.157511 10.217162 18.300255 29.453883  0.000000 28.489244 0.000000 68.206188
0.080662  2.735000 -2.735000 2.735000  8.440395 13.901752 17.738201 28.593810  0.000000 18.900914 0.000000 71.718225
0.103491  2.660000 -2.660000 2.660000  10.558805 17.073109 17.174759 27.604416  0.000000 0.000000 19.251626 73.945633
0.127842  2.580000 -2.580000 2.580000  12.497501 16.203294 19.926554 26.474368  0.000000 0.000000 32.207405 69.110148
0.152193  2.500000 -2.500000 2.500000  13.534679 15.548262 21.156819 25.813428  0.000000 0.000000 78.865720 36.788580