2.0 KiB
2.0 KiB
Grammar - json response
using LLama.Common;
using LLama.Grammars;
namespace LLama.Examples.Examples
{
// This example shows how to get response in json format using grammar.
public class GrammarJsonResponse
{
public static async Task Run()
{
string modelPath = UserSettings.GetModelPath();
var gbnf = File.ReadAllText("Assets/json.gbnf").Trim();
var grammar = Grammar.Parse(gbnf, "root");
var parameters = new ModelParams(modelPath)
{
ContextSize = 1024,
Seed = 1337,
GpuLayerCount = 5
};
using var model = LLamaWeights.LoadFromFile(parameters);
var ex = new StatelessExecutor(model, parameters);
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine("The executor has been enabled. In this example, the LLM will follow your instructions and always respond in a JSON format. For example, you can input \"Tell me the attributes of a good dish\"");
Console.ForegroundColor = ConsoleColor.White;
using var grammarInstance = grammar.CreateInstance();
var inferenceParams = new InferenceParams()
{
Temperature = 0.6f,
AntiPrompts = new List<string> { "Question:", "#", "Question: ", ".\n" },
MaxTokens = 50,
Grammar = grammarInstance
};
while (true)
{
Console.Write("\nQuestion: ");
Console.ForegroundColor = ConsoleColor.Green;
var prompt = Console.ReadLine();
Console.ForegroundColor = ConsoleColor.White;
Console.Write("Answer: ");
prompt = $"Question: {prompt?.Trim()} Answer: ";
await foreach (var text in ex.InferAsync(prompt, inferenceParams))
{
Console.Write(text);
}
}
}
}
}