LLamaSharp/LLama/Native/LLamaTokenDataArray.cs

386 lines
16 KiB
C#

using System;
using System.Buffers;
using System.Runtime.InteropServices;
namespace LLama.Native
{
/// <summary>
/// Contains an array of LLamaTokenData, potentially sorted.
/// </summary>
public struct LLamaTokenDataArray
{
/// <summary>
/// The LLamaTokenData
/// </summary>
public readonly Memory<LLamaTokenData> data;
/// <summary>
/// Indicates if `data` is sorted by logits in descending order. If this is false the token data is in _no particular order_.
/// </summary>
public bool sorted;
/// <summary>
/// Create a new LLamaTokenDataArray
/// </summary>
/// <param name="tokens"></param>
/// <param name="isSorted"></param>
public LLamaTokenDataArray(Memory<LLamaTokenData> tokens, bool isSorted = false)
{
data = tokens;
sorted = isSorted;
}
/// <summary>
/// Create a new LLamaTokenDataArray, copying the data from the given logits
/// </summary>
/// <param name="logits"></param>
/// <returns></returns>
public static LLamaTokenDataArray Create(ReadOnlySpan<float> logits)
{
var candidates = new LLamaTokenData[logits.Length];
for (var token_id = 0; token_id < logits.Length; token_id++)
candidates[token_id] = new LLamaTokenData((LLamaToken)token_id, logits[token_id], 0.0f);
return new LLamaTokenDataArray(candidates);
}
/// <summary>
/// Overwrite the logit values for all given tokens
/// </summary>
/// <param name="values">tuples of token and logit value to overwrite</param>
public void OverwriteLogits(ReadOnlySpan<(LLamaToken token, float logit)> values)
{
if (values.Length == 0)
return;
var dataSpan = data.Span;
foreach (var (token, value) in values)
{
for (var i = 0; i < data.Length; i++)
{
if (dataSpan[i].id == token)
{
dataSpan[i].logit = value;
break;
}
}
}
sorted = false;
}
#region sampling
/// <summary>
/// Apply grammar rules to candidate tokens
/// </summary>
/// <param name="ctx"></param>
/// <param name="grammar"></param>
public void ApplyGrammar(SafeLLamaContextHandle ctx, SafeLLamaGrammarHandle? grammar)
{
if (grammar == null)
return;
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_grammar(ctx, ref st, grammar);
sorted = st.sorted;
}
}
/// <summary>
/// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// </summary>
/// <param name="context"></param>
/// <param name="k">Number of tokens to keep</param>
/// <param name="minKeep">Minimum number to keep</param>
public void TopK(SafeLLamaContextHandle context, int k, ulong minKeep = 1)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_top_k(context, ref st, k, minKeep);
sorted = st.sorted;
}
}
/// <summary>
/// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// </summary>
/// <param name="context"></param>
/// <param name="p"></param>
/// <param name="minKeep"></param>
public void TopP(SafeLLamaContextHandle context, float p, ulong minKeep = 1)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_top_p(context, ref st, p, minKeep);
sorted = st.sorted;
}
}
/// <summary>
/// Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
/// </summary>
/// <param name="context"></param>
/// <param name="p">All tokens with probability greater than this will be kept</param>
/// <param name="minKeep"></param>
public void MinP(SafeLLamaContextHandle context, float p, ulong minKeep = 1)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_min_p(context, ref st, p, minKeep);
sorted = st.sorted;
}
}
/// <summary>
/// Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
/// </summary>
/// <param name="context"></param>
/// <param name="z"></param>
/// <param name="min_keep"></param>
public void TailFree(SafeLLamaContextHandle context, float z, ulong min_keep = 1)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_tail_free(context, ref st, z, min_keep);
sorted = st.sorted;
}
}
/// <summary>
/// Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
/// </summary>
/// <param name="context"></param>
/// <param name="p"></param>
/// <param name="min_keep"></param>
public void LocallyTypical(SafeLLamaContextHandle context, float p, ulong min_keep = 1)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_typical(context, ref st, p, min_keep);
sorted = st.sorted;
}
}
/// <summary>
/// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
/// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
/// </summary>
/// <param name="context"></param>
/// <param name="last_tokens"></param>
/// <param name="penalty_repeat"></param>
/// <param name="penalty_freq"></param>
/// <param name="penalty_present"></param>
public void RepetitionPenalty(SafeLLamaContextHandle context, ReadOnlySpan<LLamaToken> last_tokens, float penalty_repeat, float penalty_freq, float penalty_present)
{
unsafe
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
fixed (LLamaToken* last_tokens_handle = last_tokens)
{
NativeApi.llama_sample_repetition_penalties(context, ref st, last_tokens_handle, (ulong)last_tokens.Length, penalty_repeat, penalty_freq, penalty_present);
sorted = st.sorted;
}
}
}
}
/// <summary>
/// Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// </summary>
/// <param name="context"></param>
/// <param name="guidanceLogits">Logits extracted from a separate context from the same model.
/// Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.</param>
/// <param name="guidance">Guidance strength. 0 means no guidance, higher values applies stronger guidance</param>
public void Guidance(SafeLLamaContextHandle context, ReadOnlySpan<float> guidanceLogits, float guidance)
{
if (guidanceLogits.Length != data.Length)
throw new ArgumentException("Guidance logits count must equal vocabulary size", nameof(guidanceLogits));
if (guidance < 0)
throw new ArgumentOutOfRangeException(nameof(guidance), "Guidance strength must be greater than or equal to zero");
// this method accepts 0 (no guidance), higher means more. llama.cpp expects 1 (no guidance), higher means more
// Add one to move up to the llama.cpp baseline.
guidance += 1;
// We need logits array, which we don't have at this point.
// Copy them to a temporary array, apply guidance, then copy them back.
var logits = ArrayPool<float>.Shared.Rent(context.VocabCount);
try
{
// Copy logits into a temporary array
for (var i = 0; i < data.Length; i++)
{
ref var item = ref data.Span[i];
logits[(int)item.id] = item.logit;
}
// Apply guidance
NativeApi.llama_sample_apply_guidance(context, logits, guidanceLogits, guidance);
// Copy logits back into data array
for (var i = 0; i < data.Length; i++)
{
ref var item = ref data.Span[i];
item.logit = logits[(int)item.id];
}
// No longer sorted since we just mutated logits!
sorted = false;
}
finally
{
ArrayPool<float>.Shared.Return(logits);
}
}
/// <summary>
/// Sample with temperature.
/// As temperature increases, the prediction becomes more diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual
/// </summary>
/// <param name="context"></param>
/// <param name="temp"></param>
public void Temperature(SafeLLamaContextHandle context, float temp)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_temp(context, ref st, temp);
sorted = st.sorted;
}
}
/// <summary>
/// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
/// </summary>
/// <param name="context"></param>
public void Softmax(SafeLLamaContextHandle context)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
NativeApi.llama_sample_softmax(context, ref st);
sorted = st.sorted;
}
}
/// <summary>
/// Randomly selects a token from the candidates based on their probabilities.
/// </summary>
/// <param name="context"></param>
/// <returns></returns>
public LLamaToken SampleToken(SafeLLamaContextHandle context)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
var token = NativeApi.llama_sample_token(context, ref st);
sorted = st.sorted;
return token;
}
}
/// <summary>
/// Selects the token with the highest probability.
/// </summary>
/// <param name="context"></param>
/// <returns></returns>
public LLamaToken SampleTokenGreedy(SafeLLamaContextHandle context)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
var token = NativeApi.llama_sample_token_greedy(context, ref st);
sorted = st.sorted;
return token;
}
}
/// <summary>
/// Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// </summary>
/// <param name="context"></param>
/// <param name="tau">The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.</param>
/// <param name="eta">The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.</param>
/// <param name="m">The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.</param>
/// <param name="mu">Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.</param>
/// <returns></returns>
public LLamaToken SampleTokenMirostat(SafeLLamaContextHandle context, float tau, float eta, int m, ref float mu)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
var token = NativeApi.llama_sample_token_mirostat(context, ref st, tau, eta, m, ref mu);
sorted = st.sorted;
return token;
}
}
/// <summary>
/// Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// </summary>
/// <param name="context"></param>
/// <param name="tau">The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.</param>
/// <param name="eta">The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.</param>
/// <param name="mu">Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.</param>
/// <returns></returns>
public LLamaToken SampleTokenMirostat2(SafeLLamaContextHandle context, float tau, float eta, ref float mu)
{
using (LLamaTokenDataArrayNative.Create(this, out var st))
{
var token = NativeApi.llama_sample_token_mirostat_v2(context, ref st, tau, eta, ref mu);
sorted = st.sorted;
return token;
}
}
#endregion
}
/// <summary>
/// Contains a pointer to an array of LLamaTokenData which is pinned in memory.
/// </summary>
[StructLayout(LayoutKind.Sequential)]
public struct LLamaTokenDataArrayNative
{
/// <summary>
/// A pointer to an array of LlamaTokenData
/// </summary>
/// <remarks>Memory must be pinned in place for all the time this LLamaTokenDataArrayNative is in use</remarks>
public IntPtr data;
/// <summary>
/// Number of LLamaTokenData in the array
/// </summary>
public ulong size;
/// <summary>
/// Indicates if the items in the array are sorted
/// </summary>
public bool sorted
{
get => Convert.ToBoolean(_sorted);
set => _sorted = Convert.ToSByte(value);
}
private sbyte _sorted;
/// <summary>
/// Create a new LLamaTokenDataArrayNative around the data in the LLamaTokenDataArray
/// </summary>
/// <param name="array">Data source</param>
/// <param name="native">Created native array</param>
/// <returns>A memory handle, pinning the data in place until disposed</returns>
public static MemoryHandle Create(LLamaTokenDataArray array, out LLamaTokenDataArrayNative native)
{
var handle = array.data.Pin();
unsafe
{
native = new LLamaTokenDataArrayNative
{
data = new IntPtr(handle.Pointer),
size = (ulong)array.data.Length,
sorted = array.sorted
};
}
return handle;
}
}
}