forked from liucheng/DeepBurning-MixQ
1074 lines
44 KiB
Python
1074 lines
44 KiB
Python
import glob
|
||
import math
|
||
import os
|
||
import random
|
||
import shutil
|
||
from pathlib import Path
|
||
|
||
import cv2
|
||
import matplotlib
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn as nn
|
||
import torchvision
|
||
from tqdm import tqdm
|
||
|
||
from utils import torch_utils # , google_utils
|
||
|
||
matplotlib.rc('font', **{'size': 11})
|
||
|
||
# Set printoptions
|
||
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||
|
||
# Prevent OpenCV from multithreading (to use PyTorch DataLoader)
|
||
cv2.setNumThreads(0)
|
||
|
||
|
||
def floatn(x, n=3): # format floats to n decimals
|
||
return float(format(x, '.%gf' % n))
|
||
|
||
|
||
def init_seeds(seed=0):
|
||
random.seed(seed)
|
||
np.random.seed(seed)
|
||
torch_utils.init_seeds(seed=seed)
|
||
|
||
|
||
def load_classes(path):
|
||
# Loads *.names file at 'path'
|
||
with open(path, 'r') as f:
|
||
names = f.read().split('\n')
|
||
return list(filter(None, names)) # filter removes empty strings (such as last line)
|
||
|
||
|
||
def labels_to_class_weights(labels, nc=80):
|
||
# Get class weights (inverse frequency) from training labels
|
||
if labels[0] is None: # no labels loaded
|
||
return torch.Tensor()
|
||
|
||
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
||
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
||
weights = np.bincount(classes, minlength=nc) # occurences per class
|
||
|
||
# Prepend gridpoint count (for uCE trianing)
|
||
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
||
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
||
|
||
weights[weights == 0] = 1 # replace empty bins with 1
|
||
weights = 1 / weights # number of targets per class
|
||
weights /= weights.sum() # normalize
|
||
return torch.from_numpy(weights)
|
||
|
||
|
||
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
||
# Produces image weights based on class mAPs
|
||
n = len(labels)
|
||
class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
|
||
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
||
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
||
return image_weights
|
||
|
||
|
||
def coco_class_weights(): # frequency of each class in coco train2014
|
||
n = [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671,
|
||
6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689,
|
||
4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004,
|
||
5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933,
|
||
1877, 17630, 4337, 4624, 1075, 3468, 135, 1380]
|
||
weights = 1 / torch.Tensor(n)
|
||
weights /= weights.sum()
|
||
# with open('data/coco.names', 'r') as f:
|
||
# for k, v in zip(f.read().splitlines(), n):
|
||
# print('%20s: %g' % (k, v))
|
||
return weights
|
||
|
||
|
||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||
return x
|
||
|
||
|
||
def weights_init_normal(m):
|
||
classname = m.__class__.__name__
|
||
if classname.find('Conv') != -1:
|
||
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
|
||
elif classname.find('BatchNorm2d') != -1:
|
||
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
|
||
torch.nn.init.constant_(m.bias.data, 0.0)
|
||
|
||
|
||
def xyxy2xywh(x):
|
||
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
|
||
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
|
||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
|
||
y[:, 2] = x[:, 2] - x[:, 0]
|
||
y[:, 3] = x[:, 3] - x[:, 1]
|
||
return y
|
||
|
||
|
||
def xywh2xyxy(x):
|
||
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
|
||
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
||
y[:, 0] = x[:, 0] - x[:, 2] / 2
|
||
y[:, 1] = x[:, 1] - x[:, 3] / 2
|
||
y[:, 2] = x[:, 0] + x[:, 2] / 2
|
||
y[:, 3] = x[:, 1] + x[:, 3] / 2
|
||
return y
|
||
|
||
|
||
# def xywh2xyxy(box):
|
||
# # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2]
|
||
# if isinstance(box, torch.Tensor):
|
||
# x, y, w, h = box.t()
|
||
# return torch.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).t()
|
||
# else: # numpy
|
||
# x, y, w, h = box.T
|
||
# return np.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).T
|
||
#
|
||
#
|
||
# def xyxy2xywh(box):
|
||
# # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h]
|
||
# if isinstance(box, torch.Tensor):
|
||
# x1, y1, x2, y2 = box.t()
|
||
# return torch.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).t()
|
||
# else: # numpy
|
||
# x1, y1, x2, y2 = box.T
|
||
# return np.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).T
|
||
|
||
|
||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||
if ratio_pad is None: # calculate from img0_shape
|
||
gain = max(img1_shape) / max(img0_shape) # gain = old / new
|
||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||
else:
|
||
gain = ratio_pad[0][0]
|
||
pad = ratio_pad[1]
|
||
|
||
coords[:, [0, 2]] -= pad[0] # x padding
|
||
coords[:, [1, 3]] -= pad[1] # y padding
|
||
coords[:, :4] /= gain
|
||
clip_coords(coords, img0_shape)
|
||
return coords
|
||
|
||
|
||
def clip_coords(boxes, img_shape):
|
||
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||
boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=img_shape[1]) # clip x
|
||
boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=img_shape[0]) # clip y
|
||
|
||
|
||
def ap_per_class(tp, conf, pred_cls, target_cls):
|
||
""" Compute the average precision, given the recall and precision curves.
|
||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||
# Arguments
|
||
tp: True positives (nparray, nx1 or nx10).
|
||
conf: Objectness value from 0-1 (nparray).
|
||
pred_cls: Predicted object classes (nparray).
|
||
target_cls: True object classes (nparray).
|
||
# Returns
|
||
The average precision as computed in py-faster-rcnn.
|
||
"""
|
||
|
||
# Sort by objectness
|
||
i = np.argsort(-conf)
|
||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||
|
||
# Find unique classes
|
||
unique_classes = np.unique(target_cls)
|
||
|
||
# Create Precision-Recall curve and compute AP for each class
|
||
s = [len(unique_classes), tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||
for ci, c in enumerate(unique_classes):
|
||
i = pred_cls == c
|
||
n_gt = (target_cls == c).sum() # Number of ground truth objects
|
||
n_p = i.sum() # Number of predicted objects
|
||
|
||
if n_p == 0 or n_gt == 0:
|
||
continue
|
||
else:
|
||
# Accumulate FPs and TPs
|
||
fpc = (1 - tp[i]).cumsum(0)
|
||
tpc = tp[i].cumsum(0)
|
||
|
||
# Recall
|
||
recall = tpc / (n_gt + 1e-16) # recall curve
|
||
r[ci] = recall[-1]
|
||
|
||
# Precision
|
||
precision = tpc / (tpc + fpc) # precision curve
|
||
p[ci] = precision[-1]
|
||
|
||
# AP from recall-precision curve
|
||
for j in range(tp.shape[1]):
|
||
ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
|
||
|
||
# Plot
|
||
# fig, ax = plt.subplots(1, 1, figsize=(4, 4))
|
||
# ax.plot(recall, precision)
|
||
# ax.set_xlabel('Recall')
|
||
# ax.set_ylabel('Precision')
|
||
# ax.set_xlim(0, 1.01)
|
||
# ax.set_ylim(0, 1.01)
|
||
# fig.tight_layout()
|
||
# fig.savefig('PR_curve.png', dpi=300)
|
||
|
||
# Compute F1 score (harmonic mean of precision and recall)
|
||
f1 = 2 * p * r / (p + r + 1e-16)
|
||
|
||
return p, r, ap, f1, unique_classes.astype('int32')
|
||
|
||
|
||
def compute_ap(recall, precision):
|
||
""" Compute the average precision, given the recall and precision curves.
|
||
Source: https://github.com/rbgirshick/py-faster-rcnn.
|
||
# Arguments
|
||
recall: The recall curve (list).
|
||
precision: The precision curve (list).
|
||
# Returns
|
||
The average precision as computed in py-faster-rcnn.
|
||
"""
|
||
|
||
# Append sentinel values to beginning and end
|
||
mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
|
||
mpre = np.concatenate(([0.], precision, [0.]))
|
||
|
||
# Compute the precision envelope
|
||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre, 0)), 0)
|
||
|
||
# Integrate area under curve
|
||
method = 'interp' # methods: 'continuous', 'interp'
|
||
if method == 'interp':
|
||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||
else: # 'continuous'
|
||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||
|
||
return ap
|
||
|
||
|
||
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
|
||
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||
box2 = box2.t()
|
||
|
||
# Get the coordinates of bounding boxes
|
||
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||
else: # x, y, w, h = box1
|
||
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
||
|
||
# Intersection area
|
||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||
|
||
# Union Area
|
||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
|
||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
|
||
union = (w1 * h1 + 1e-16) + w2 * h2 - inter
|
||
|
||
iou = inter / union # iou
|
||
if GIoU or DIoU or CIoU:
|
||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
|
||
c_area = cw * ch + 1e-16 # convex area
|
||
return iou - (c_area - union) / c_area # GIoU
|
||
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||
# convex diagonal squared
|
||
c2 = cw ** 2 + ch ** 2 + 1e-16
|
||
# centerpoint distance squared
|
||
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
|
||
if DIoU:
|
||
return iou - rho2 / c2 # DIoU
|
||
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||
with torch.no_grad():
|
||
alpha = v / (1 - iou + v)
|
||
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||
|
||
return iou
|
||
|
||
|
||
def box_iou(boxes1, boxes2):
|
||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||
"""
|
||
Return intersection-over-union (Jaccard index) of boxes.
|
||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||
Arguments:
|
||
boxes1 (Tensor[N, 4])
|
||
boxes2 (Tensor[M, 4])
|
||
Returns:
|
||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||
IoU values for every element in boxes1 and boxes2
|
||
"""
|
||
|
||
def box_area(box):
|
||
# box = 4xn
|
||
return (box[2] - box[0]) * (box[3] - box[1])
|
||
|
||
area1 = box_area(boxes1.t())
|
||
area2 = box_area(boxes2.t())
|
||
|
||
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
||
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
||
|
||
inter = (rb - lt).clamp(min=0).prod(2) # [N,M]
|
||
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
||
|
||
|
||
def wh_iou(wh1, wh2):
|
||
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||
wh1 = wh1[:, None] # [N,1,2]
|
||
wh2 = wh2[None] # [1,M,2]
|
||
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
||
|
||
|
||
class FocalLoss(nn.Module):
|
||
# Wraps focal loss around existing loss_fcn() https://arxiv.org/pdf/1708.02002.pdf
|
||
# i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=2.5)
|
||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||
super(FocalLoss, self).__init__()
|
||
self.loss_fcn = loss_fcn
|
||
self.gamma = gamma
|
||
self.alpha = alpha
|
||
self.reduction = loss_fcn.reduction
|
||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||
|
||
def forward(self, input, target):
|
||
loss = self.loss_fcn(input, target)
|
||
# loss *= self.alpha * (1.000001 - torch.exp(-loss)) ** self.gamma # non-zero power for gradient stability
|
||
|
||
pred_prob = torch.sigmoid(input) # prob from logits
|
||
p_t = target * pred_prob + (1 - target) * (1 - pred_prob)
|
||
alpha_factor = target * self.alpha + (1 - target) * (1 - self.alpha)
|
||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||
loss *= alpha_factor * modulating_factor
|
||
|
||
if self.reduction == 'mean':
|
||
return loss.mean()
|
||
elif self.reduction == 'sum':
|
||
return loss.sum()
|
||
else: # 'none'
|
||
return loss
|
||
|
||
|
||
def compute_loss(p, targets, model, giou_flag=False): # predictions, targets, model
|
||
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
||
lcls, lbox, lobj, miou = ft([0]), ft([0]), ft([0]), ft([0])
|
||
tcls, tbox, indices, anchor_vec, img_w = build_targets(model, targets)
|
||
h = model.hyp # hyperparameters
|
||
arc = model.arc # # (default, uCE, uBCE) detection architectures
|
||
red = 'mean' # Loss reduction (sum or mean)
|
||
|
||
# Define criteria
|
||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red)
|
||
BCE = nn.BCEWithLogitsLoss(reduction=red)
|
||
CE = nn.CrossEntropyLoss(reduction=red) # weight=model.class_weights
|
||
|
||
if 'F' in arc: # add focal loss
|
||
g = h['fl_gamma']
|
||
# BCEcls, BCEobj, BCE, CE = FocalLoss(BCEcls), FocalLoss(BCEobj), FocalLoss(BCE), FocalLoss(CE)
|
||
|
||
# Compute losses
|
||
np, ng = 0, 0 # number grid points, targets
|
||
for i, pi in enumerate(p): # layer index, layer predictions
|
||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||
tobj = torch.zeros_like(pi[..., 0]) # target obj
|
||
tweight = torch.ones_like(pi[..., 0])
|
||
np += tobj.numel()
|
||
|
||
# Compute losses
|
||
nb = len(b)
|
||
if nb: # number of targets
|
||
ng += nb
|
||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||
# ps[:, 2:4] = torch.sigmoid(ps[:, 2:4]) # wh power loss (uncomment)
|
||
|
||
# GIoU
|
||
pxy = torch.sigmoid(ps[:, 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy)
|
||
pwh = torch.exp(ps[:, 2:4]).clamp(max=1E3) * anchor_vec[i]
|
||
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||
# print('pbox.shape', pbox.shape)
|
||
# print(tbox[i].shape)
|
||
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, CIoU=True) # giou computation
|
||
iou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False) # iou computation
|
||
|
||
# 直接用的iou
|
||
lbox += ((1.0 - giou)*img_w).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss
|
||
miou += iou.mean()
|
||
# 置信度目标值用的是giou
|
||
tobj[b, a, gj, gi] = giou.detach().clamp(0).type(tobj.dtype) if giou_flag else 1.0
|
||
tweight[b, a] = torch.einsum('i...,i->i...', torch.ones((nb, *(tweight.shape[2:])), device=tweight.device), img_w)
|
||
|
||
if 'default' in arc and model.nc > 1: # cls loss (only if multiple classes)
|
||
t = torch.zeros_like(ps[:, 5:]) # targets
|
||
t[range(nb), tcls[i]] = 1.0
|
||
lcls += BCEcls(ps[:, 5:], t) # BCE
|
||
# lcls += CE(ps[:, 5:], tcls[i]) # CE
|
||
|
||
# Instance-class weighting (use with reduction='none')
|
||
# nt = t.sum(0) + 1 # number of targets per class
|
||
# lcls += (BCEcls(ps[:, 5:], t) / nt).mean() * nt.mean() # v1
|
||
# lcls += (BCEcls(ps[:, 5:], t) / nt[tcls[i]].view(-1,1)).mean() * nt.mean() # v2
|
||
|
||
# Append targets to text file
|
||
# with open('targets.txt', 'a') as file:
|
||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||
|
||
if 'default' in arc: # separate obj and cls
|
||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red,
|
||
weight=tweight,
|
||
)
|
||
lobj += BCEobj(pi[..., 4], tobj) # obj loss
|
||
|
||
elif 'BCE' in arc: # unified BCE (80 classes)
|
||
t = torch.zeros_like(pi[..., 5:]) # targets
|
||
if nb:
|
||
t[b, a, gj, gi, tcls[i]] = 1.0
|
||
lobj += BCE(pi[..., 5:], t)
|
||
|
||
elif 'CE' in arc: # unified CE (1 background + 80 classes)
|
||
t = torch.zeros_like(pi[..., 0], dtype=torch.long) # targets
|
||
if nb:
|
||
t[b, a, gj, gi] = tcls[i] + 1
|
||
lcls += CE(pi[..., 4:].view(-1, model.nc + 1), t.view(-1))
|
||
|
||
lbox *= h['giou']
|
||
lobj *= h['obj']
|
||
lcls *= h['cls']
|
||
if red == 'sum':
|
||
bs = tobj.shape[0] # batch size
|
||
lobj *= 3 / (6300 * bs) * 2 # 3 / np * 2
|
||
if ng:
|
||
lcls *= 3 / ng / model.nc
|
||
lbox *= 3 / ng
|
||
|
||
loss = lbox + lobj + lcls
|
||
return loss, torch.cat((lbox, lobj, miou, loss)).detach() # 这个地方用不到lcls,不如拿来显示train miou
|
||
|
||
|
||
def build_targets(model, targets):
|
||
# targets = [image, class, x, y, w, h]
|
||
# print('targets.shape', targets.shape)
|
||
nt = len(targets)
|
||
tcls, tbox, indices, av, img_w = [], [], [], [], []
|
||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||
# reject, use_all_anchors = True, True
|
||
reject, use_all_anchors = False, True
|
||
for i in model.yolo_layers:
|
||
# get number of grid points and anchor vec for this yolo layer
|
||
#if multi_gpu:
|
||
# ng, anchor_vec = model.module.module_list[i].ng, model.module.module_list[i].anchor_vec
|
||
#else:
|
||
# ng, anchor_vec = model.module_list[i].ng, model.module_list[i].anchor_vec
|
||
ng, anchor_vec = i.ng, i.anchor_vec
|
||
# iou of targets-anchors
|
||
t, a = targets, []
|
||
gwh = t[:, 4:6] * ng
|
||
if nt:
|
||
iou = wh_iou(anchor_vec, gwh)
|
||
|
||
if use_all_anchors:
|
||
na = len(anchor_vec) # number of anchors
|
||
a = torch.arange(na).view((-1, 1)).repeat([1, nt]).view(-1)
|
||
t = targets.repeat([na, 1])
|
||
gwh = gwh.repeat([na, 1])
|
||
else: # use best anchor only
|
||
iou, a = iou.max(0) # best iou and anchor
|
||
|
||
# reject anchors below iou_thres (OPTIONAL, increases P, lowers R)
|
||
if reject:
|
||
j = iou.view(-1) > model.hyp['iou_t'] # iou threshold hyperparameter
|
||
t, a, gwh = t[j], a[j], gwh[j]
|
||
|
||
# Indices
|
||
b, c = t[:, :2].long().t() # target image, class
|
||
img_w = t[:, 6].t()
|
||
gxy = t[:, 2:4] * ng # grid x, y
|
||
gi, gj = gxy.long().t() # grid x, y indices
|
||
indices.append((b, a, gj, gi))
|
||
|
||
# Box
|
||
gxy -= gxy.floor() # xy
|
||
tbox.append(torch.cat((gxy, gwh), 1)) # xywh (grids)
|
||
av.append(anchor_vec[a]) # anchor vec
|
||
|
||
# Class
|
||
tcls.append(c)
|
||
if c.shape[0]: # if any targets
|
||
assert c.max() < model.nc, 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \
|
||
'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % (
|
||
model.nc, model.nc - 1, c.max())
|
||
|
||
|
||
return tcls, tbox, indices, av, img_w
|
||
|
||
|
||
def non_max_suppression(prediction, conf_thres=0.5, iou_thres=0.5, multi_cls=True, classes=None, agnostic=False):
|
||
"""
|
||
Removes detections with lower object confidence score than 'conf_thres'
|
||
Non-Maximum Suppression to further filter detections.
|
||
Returns detections with shape:
|
||
(x1, y1, x2, y2, object_conf, conf, class)
|
||
"""
|
||
# NMS methods https://github.com/ultralytics/yolov3/issues/679 'or', 'and', 'merge', 'vision', 'vision_batch'
|
||
|
||
# Box constraints
|
||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||
|
||
method = 'vision_batch'
|
||
nc = prediction[0].shape[1] - 5 # number of classes
|
||
multi_cls = multi_cls and (nc > 1) # allow multiple classes per anchor
|
||
output = [None] * len(prediction)
|
||
for image_i, pred in enumerate(prediction):
|
||
# Apply conf constraint
|
||
pred = pred[pred[:, 4] > conf_thres]
|
||
|
||
|
||
# Apply width-height constraint
|
||
pred = pred[(pred[:, 2:4] > min_wh).all(1) & (pred[:, 2:4] < max_wh).all(1)]
|
||
|
||
# If none remain process next image
|
||
if len(pred) == 0:
|
||
continue
|
||
|
||
# Compute conf
|
||
pred[..., 5:] *= pred[..., 4:5] # conf = obj_conf * cls_conf
|
||
|
||
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||
box = xywh2xyxy(pred[:, :4])
|
||
|
||
# Detections matrix nx6 (xyxy, conf, cls)
|
||
if multi_cls:
|
||
i, j = (pred[:, 5:] > conf_thres).nonzero().t()
|
||
pred = torch.cat((box[i], pred[i, j + 5].unsqueeze(1), j.float().unsqueeze(1)), 1)
|
||
else: # best class only
|
||
conf, j = pred[:, 5:].max(1)
|
||
print(conf.shape)
|
||
pred = torch.cat((box, conf.unsqueeze(1), j.float().unsqueeze(1)), 1)
|
||
|
||
# Filter by class
|
||
if classes:
|
||
pred = pred[(j.view(-1, 1) == torch.tensor(classes, device=j.device)).any(1)]
|
||
|
||
# Apply finite constraint
|
||
if not torch.isfinite(pred).all():
|
||
pred = pred[torch.isfinite(pred).all(1)]
|
||
|
||
# Batched NMS
|
||
if method == 'vision_batch':
|
||
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # class-agnostic NMS
|
||
output[image_i] = pred[torchvision.ops.boxes.batched_nms(pred[:, :4], pred[:, 4], c, iou_thres)]
|
||
continue
|
||
|
||
# Sort by confidence
|
||
if not method.startswith('vision'):
|
||
pred = pred[pred[:, 4].argsort(descending=True)]
|
||
|
||
# All other NMS methods
|
||
det_max = []
|
||
cls = pred[:, -1]
|
||
for c in cls.unique():
|
||
dc = pred[cls == c] # select class c
|
||
n = len(dc)
|
||
if n == 1:
|
||
det_max.append(dc) # No NMS required if only 1 prediction
|
||
continue
|
||
elif n > 500:
|
||
dc = dc[:500] # limit to first 500 boxes: https://github.com/ultralytics/yolov3/issues/117
|
||
|
||
if method == 'vision':
|
||
det_max.append(dc[torchvision.ops.boxes.nms(dc[:, :4], dc[:, 4], iou_thres)])
|
||
|
||
elif method == 'or': # default
|
||
# METHOD1
|
||
# ind = list(range(len(dc)))
|
||
# while len(ind):
|
||
# j = ind[0]
|
||
# det_max.append(dc[j:j + 1]) # save highest conf detection
|
||
# reject = (bbox_iou(dc[j], dc[ind]) > iou_thres).nonzero()
|
||
# [ind.pop(i) for i in reversed(reject)]
|
||
|
||
# METHOD2
|
||
while dc.shape[0]:
|
||
det_max.append(dc[:1]) # save highest conf detection
|
||
if len(dc) == 1: # Stop if we're at the last detection
|
||
break
|
||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||
dc = dc[1:][iou < iou_thres] # remove ious > threshold
|
||
|
||
elif method == 'and': # requires overlap, single boxes erased
|
||
while len(dc) > 1:
|
||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||
if iou.max() > 0.5:
|
||
det_max.append(dc[:1])
|
||
dc = dc[1:][iou < iou_thres] # remove ious > threshold
|
||
|
||
elif method == 'merge': # weighted mixture box
|
||
while len(dc):
|
||
if len(dc) == 1:
|
||
det_max.append(dc)
|
||
break
|
||
i = bbox_iou(dc[0], dc) > iou_thres # iou with other boxes
|
||
weights = dc[i, 4:5]
|
||
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
|
||
det_max.append(dc[:1])
|
||
dc = dc[i == 0]
|
||
|
||
elif method == 'soft': # soft-NMS https://arxiv.org/abs/1704.04503
|
||
sigma = 0.5 # soft-nms sigma parameter
|
||
while len(dc):
|
||
if len(dc) == 1:
|
||
det_max.append(dc)
|
||
break
|
||
det_max.append(dc[:1])
|
||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||
dc = dc[1:]
|
||
dc[:, 4] *= torch.exp(-iou ** 2 / sigma) # decay confidences
|
||
dc = dc[dc[:, 4] > conf_thres] # https://github.com/ultralytics/yolov3/issues/362
|
||
|
||
if len(det_max):
|
||
det_max = torch.cat(det_max) # concatenate
|
||
output[image_i] = det_max[(-det_max[:, 4]).argsort()] # sort
|
||
|
||
return output
|
||
|
||
|
||
def get_yolo_layers(model):
|
||
bool_vec = [x['type'] == 'yolo' for x in model.module_defs]
|
||
return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3
|
||
|
||
|
||
def print_model_biases(model):
|
||
# prints the bias neurons preceding each yolo layer
|
||
print('\nModel Bias Summary: %8s%18s%18s%18s' % ('layer', 'regression', 'objectness', 'classification'))
|
||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||
for l in model.yolo_layers: # print pretrained biases
|
||
if multi_gpu:
|
||
na = model.module.module_list[l].na # number of anchors
|
||
b = model.module.module_list[l - 1][0].bias.view(na, -1) # bias 3x85
|
||
else:
|
||
na = model.module_list[l].na
|
||
b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85
|
||
print(' ' * 20 + '%8g %18s%18s%18s' % (l, '%5.2f+/-%-5.2f' % (b[:, :4].mean(), b[:, :4].std()),
|
||
'%5.2f+/-%-5.2f' % (b[:, 4].mean(), b[:, 4].std()),
|
||
'%5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std())))
|
||
|
||
|
||
def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_optimizer()
|
||
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
|
||
x = torch.load(f, map_location=torch.device('cpu'))
|
||
x['optimizer'] = None
|
||
# x['training_results'] = None # uncomment to create a backbone
|
||
# x['epoch'] = -1 # uncomment to create a backbone
|
||
torch.save(x, f)
|
||
|
||
|
||
def create_backbone(f='weights/last.pt'): # from utils.utils import *; create_backbone()
|
||
# create a backbone from a *.pt file
|
||
x = torch.load(f, map_location=torch.device('cpu'))
|
||
x['optimizer'] = None
|
||
x['training_results'] = None
|
||
x['epoch'] = -1
|
||
for p in x['model'].values():
|
||
try:
|
||
p.requires_grad = True
|
||
except:
|
||
pass
|
||
torch.save(x, 'weights/backbone.pt')
|
||
|
||
|
||
def coco_class_count(path='../coco/labels/train2014/'):
|
||
# Histogram of occurrences per class
|
||
nc = 80 # number classes
|
||
x = np.zeros(nc, dtype='int32')
|
||
files = sorted(glob.glob('%s/*.*' % path))
|
||
for i, file in enumerate(files):
|
||
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
||
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
|
||
print(i, len(files))
|
||
|
||
|
||
def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people()
|
||
# Find images with only people
|
||
files = sorted(glob.glob('%s/*.*' % path))
|
||
for i, file in enumerate(files):
|
||
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
||
if all(labels[:, 0] == 0):
|
||
print(labels.shape[0], file)
|
||
|
||
|
||
def select_best_evolve(path='evolve*.txt'): # from utils.utils import *; select_best_evolve()
|
||
# Find best evolved mutation
|
||
for file in sorted(glob.glob(path)):
|
||
x = np.loadtxt(file, dtype=np.float32, ndmin=2)
|
||
print(file, x[fitness(x).argmax()])
|
||
|
||
|
||
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
|
||
# crops images into random squares up to scale fraction
|
||
# WARNING: overwrites images!
|
||
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
||
img = cv2.imread(file) # BGR
|
||
if img is not None:
|
||
h, w = img.shape[:2]
|
||
|
||
# create random mask
|
||
a = 30 # minimum size (pixels)
|
||
mask_h = random.randint(a, int(max(a, h * scale))) # mask height
|
||
mask_w = mask_h # mask width
|
||
|
||
# box
|
||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||
xmax = min(w, xmin + mask_w)
|
||
ymax = min(h, ymin + mask_h)
|
||
|
||
# apply random color mask
|
||
cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
|
||
|
||
|
||
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
|
||
# Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
|
||
if os.path.exists('new/'):
|
||
shutil.rmtree('new/') # delete output folder
|
||
os.makedirs('new/') # make new output folder
|
||
os.makedirs('new/labels/')
|
||
os.makedirs('new/images/')
|
||
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
||
with open(file, 'r') as f:
|
||
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
||
i = labels[:, 0] == label_class
|
||
if any(i):
|
||
img_file = file.replace('labels', 'images').replace('txt', 'jpg')
|
||
labels[:, 0] = 0 # reset class to 0
|
||
with open('new/images.txt', 'a') as f: # add image to dataset list
|
||
f.write(img_file + '\n')
|
||
with open('new/labels/' + Path(file).name, 'a') as f: # write label
|
||
for l in labels[i]:
|
||
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
|
||
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
||
|
||
|
||
def kmean_anchors(path='../coco/train2017.txt', n=9, img_size=(608, 608)):
|
||
# from utils.utils import *; _ = kmean_anchors()
|
||
# Produces a list of target kmeans suitable for use in *.cfg files
|
||
from utils.datasets import LoadImagesAndLabels
|
||
thr = 0.20 # IoU threshold
|
||
|
||
def print_results(k):
|
||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||
iou = wh_iou(wh, torch.Tensor(k))
|
||
max_iou = iou.max(1)[0]
|
||
bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n # best possible recall, anch > thr
|
||
print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat))
|
||
print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' %
|
||
(n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='')
|
||
for i, x in enumerate(k):
|
||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||
return k
|
||
|
||
def fitness(k): # mutation fitness
|
||
iou = wh_iou(wh, torch.Tensor(k)) # iou
|
||
max_iou = iou.max(1)[0]
|
||
return max_iou.mean() # product
|
||
|
||
# Get label wh
|
||
wh = []
|
||
dataset = LoadImagesAndLabels(path, augment=True, rect=True, cache_labels=True)
|
||
nr = 1 if img_size[0] == img_size[1] else 10 # number augmentation repetitions
|
||
for s, l in zip(dataset.shapes, dataset.labels):
|
||
wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh
|
||
wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 10x
|
||
wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale)
|
||
wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh)
|
||
|
||
# Darknet yolov3.cfg anchors
|
||
use_darknet = False
|
||
if use_darknet and n == 9:
|
||
k = np.array([[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]])
|
||
else:
|
||
# Kmeans calculation
|
||
from scipy.cluster.vq import kmeans
|
||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||
s = wh.std(0) # sigmas for whitening
|
||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||
k *= s
|
||
wh = torch.Tensor(wh)
|
||
k = print_results(k)
|
||
|
||
# # Plot
|
||
# k, d = [None] * 20, [None] * 20
|
||
# for i in tqdm(range(1, 21)):
|
||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7))
|
||
# ax = ax.ravel()
|
||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||
# fig.tight_layout()
|
||
# fig.savefig('wh.png', dpi=200)
|
||
|
||
# Evolve
|
||
npr = np.random
|
||
f, sh, ng, mp, s = fitness(k), k.shape, 1000, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||
for _ in tqdm(range(ng), desc='Evolving anchors'):
|
||
v = np.ones(sh)
|
||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) # 98.6, 61.6
|
||
kg = (k.copy() * v).clip(min=2.0)
|
||
fg = fitness(kg)
|
||
if fg > f:
|
||
f, k = fg, kg.copy()
|
||
print_results(k)
|
||
k = print_results(k)
|
||
|
||
return k
|
||
|
||
|
||
def print_mutation(hyp, results, bucket=''):
|
||
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||
c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss)
|
||
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||
|
||
if bucket:
|
||
os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt
|
||
|
||
with open('evolve.txt', 'a') as f: # append result
|
||
f.write(c + b + '\n')
|
||
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||
np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness
|
||
|
||
if bucket:
|
||
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
|
||
|
||
|
||
def apply_classifier(x, model, img, im0):
|
||
# applies a second stage classifier to yolo outputs
|
||
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
||
for i, d in enumerate(x): # per image
|
||
if d is not None and len(d):
|
||
d = d.clone()
|
||
|
||
# Reshape and pad cutouts
|
||
b = xyxy2xywh(d[:, :4]) # boxes
|
||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||
d[:, :4] = xywh2xyxy(b).long()
|
||
|
||
# Rescale boxes from img_size to im0 size
|
||
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
||
|
||
# Classes
|
||
pred_cls1 = d[:, 5].long()
|
||
ims = []
|
||
for j, a in enumerate(d): # per item
|
||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||
im = cv2.resize(cutout, (224, 224)) # BGR
|
||
# cv2.imwrite('test%i.jpg' % j, cutout)
|
||
|
||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
||
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||
ims.append(im)
|
||
|
||
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
||
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
||
|
||
return x
|
||
|
||
|
||
def fitness(x):
|
||
# Returns fitness (for use with results.txt or evolve.txt)
|
||
w = [0.0, 0.01, 0.99, 0.00] # weights for [P, R, mAP, F1]@0.5 or [P, R, mAP@0.5, mAP@0.5:0.95]
|
||
return (x[:, :4] * w).sum(1)
|
||
|
||
|
||
# Plotting functions ---------------------------------------------------------------------------------------------------
|
||
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||
# Plots one bounding box on image img
|
||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line thickness
|
||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||
cv2.rectangle(img, c1, c2, color, thickness=tl)
|
||
if label:
|
||
tf = max(tl - 1, 1) # font thickness
|
||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||
cv2.rectangle(img, c1, c2, color, -1) # filled
|
||
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||
|
||
|
||
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
|
||
# Compares the two methods for width-height anchor multiplication
|
||
# https://github.com/ultralytics/yolov3/issues/168
|
||
x = np.arange(-4.0, 4.0, .1)
|
||
ya = np.exp(x)
|
||
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||
|
||
fig = plt.figure(figsize=(6, 3), dpi=150)
|
||
plt.plot(x, ya, '.-', label='yolo method')
|
||
plt.plot(x, yb ** 2, '.-', label='^2 power method')
|
||
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
|
||
plt.xlim(left=-4, right=4)
|
||
plt.ylim(bottom=0, top=6)
|
||
plt.xlabel('input')
|
||
plt.ylabel('output')
|
||
plt.legend()
|
||
fig.tight_layout()
|
||
fig.savefig('comparison.png', dpi=200)
|
||
|
||
|
||
def plot_images(imgs, targets, paths=None, fname='images.png'):
|
||
# Plots training images overlaid with targets
|
||
imgs = imgs.cpu().numpy()
|
||
targets = targets.cpu().numpy()
|
||
# targets = targets[targets[:, 1] == 21] # plot only one class
|
||
|
||
fig = plt.figure(figsize=(10, 10))
|
||
bs, _, h, w = imgs.shape # batch size, _, height, width
|
||
bs = min(bs, 100) # limit plot to 16 images
|
||
ns = np.ceil(bs ** 0.5).astype(np.int) # number of subplots
|
||
|
||
for i in range(bs):
|
||
boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
|
||
boxes[[0, 2]] *= w
|
||
boxes[[1, 3]] *= h
|
||
plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
|
||
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
|
||
plt.axis('off')
|
||
if paths is not None:
|
||
s = Path(paths[i]).name
|
||
plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters
|
||
fig.tight_layout()
|
||
fig.savefig(fname, dpi=2000)
|
||
plt.close()
|
||
|
||
|
||
def plot_test_txt(): # from utils.utils import *; plot_test()
|
||
# Plot test.txt histograms
|
||
x = np.loadtxt('test.txt', dtype=np.float32)
|
||
box = xyxy2xywh(x[:, :4])
|
||
cx, cy = box[:, 0], box[:, 1]
|
||
|
||
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
|
||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||
ax.set_aspect('equal')
|
||
fig.tight_layout()
|
||
plt.savefig('hist2d.png', dpi=300)
|
||
|
||
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
|
||
ax[0].hist(cx, bins=600)
|
||
ax[1].hist(cy, bins=600)
|
||
fig.tight_layout()
|
||
plt.savefig('hist1d.png', dpi=200)
|
||
|
||
|
||
def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
|
||
# Plot test.txt histograms
|
||
x = np.loadtxt('targets.txt', dtype=np.float32)
|
||
x = x.T
|
||
|
||
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
|
||
ax = ax.ravel()
|
||
for i in range(4):
|
||
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||
ax[i].legend()
|
||
ax[i].set_title(s[i])
|
||
fig.tight_layout()
|
||
plt.savefig('targets.jpg', dpi=200)
|
||
|
||
|
||
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
|
||
# Plot hyperparameter evolution results in evolve.txt
|
||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||
f = fitness(x)
|
||
weights = (f - f.min()) ** 2 # for weighted results
|
||
fig = plt.figure(figsize=(12, 10))
|
||
matplotlib.rc('font', **{'size': 8})
|
||
for i, (k, v) in enumerate(hyp.items()):
|
||
y = x[:, i + 7]
|
||
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||
mu = y[f.argmax()] # best single result
|
||
plt.subplot(4, 5, i + 1)
|
||
plt.plot(mu, f.max(), 'o', markersize=10)
|
||
plt.plot(y, f, '.')
|
||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||
print('%15s: %.3g' % (k, mu))
|
||
fig.tight_layout()
|
||
plt.savefig('evolve.png', dpi=200)
|
||
|
||
|
||
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
|
||
# Plot training results files 'results*.txt', overlaying train and val losses
|
||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'F1'] # legends
|
||
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||
n = results.shape[1] # number of rows
|
||
x = range(start, min(stop, n) if stop else n)
|
||
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
|
||
ax = ax.ravel()
|
||
for i in range(5):
|
||
for j in [i, i + 5]:
|
||
y = results[j, x]
|
||
if i in [0, 1, 2]:
|
||
y[y == 0] = np.nan # dont show zero loss values
|
||
ax[i].plot(x, y, marker='.', label=s[j])
|
||
ax[i].set_title(t[i])
|
||
ax[i].legend()
|
||
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||
fig.tight_layout()
|
||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||
|
||
|
||
def plot_results(start=0, stop=0, bucket='', id=()): # from utils.utils import *; plot_results()
|
||
# Plot training results files 'results*.txt'
|
||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||
ax = ax.ravel()
|
||
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'F1']
|
||
if bucket:
|
||
os.system('rm -rf storage.googleapis.com')
|
||
files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||
else:
|
||
files = glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')
|
||
for f in sorted(files):
|
||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||
n = results.shape[1] # number of rows
|
||
x = range(start, min(stop, n) if stop else n)
|
||
for i in range(10):
|
||
y = results[i, x]
|
||
if i in [0, 1, 2, 5, 6, 7]:
|
||
y[y == 0] = np.nan # dont show zero loss values
|
||
# y /= y[0] # normalize
|
||
ax[i].plot(x, y, marker='.', label=Path(f).stem, linewidth=2, markersize=8)
|
||
ax[i].set_title(s[i])
|
||
if i in [5, 6, 7]: # share train and val loss y axes
|
||
ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||
|
||
fig.tight_layout()
|
||
ax[1].legend()
|
||
fig.savefig('results.png', dpi=200)
|