DeepBurning-MixQ/dacsdc/search_train.py

385 lines
18 KiB
Python

import argparse
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import sys
sys.path.append('..')
import localconfig
import test
from datasets import *
from yolo_utils import *
from mymodel import *
import mymodel
wdir = 'weights' + os.sep # weights dir
# Hyperparameters (results68: 59.9 mAP@0.5 yolov3-spp-416) https://github.com/ultralytics/yolov3/issues/310
hyp = {'giou': 3.54, # giou loss gain
'cls': 37.4, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 64.3, # obj loss gain (*=img_size/320 if img_size != 320)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.225, # iou training threshold
'lr0': 0.01, # initial learning rate (SGD=5E-3, Adam=5E-4)
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
'momentum': 0.937, # SGD momentum
'weight_decay': 0.000484, # optimizer weight decay
'fl_gamma': 0.5, # focal loss gamma
'hsv_h': 0.0138, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.678, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
'degrees': 1.98, # image rotation (+/- deg)
'translate': 0.05, # image translation (+/- fraction)
'scale': 0.05, # image scale (+/- gain)
'shear': 0.641} # image shear (+/- deg)
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
def train():
img_size, img_size_test = opt.img_size if len(opt.img_size) == 2 else opt.img_size * 2 # train, test sizes
epochs = opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
batch_size = opt.batch_size
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
weights = opt.weights # initial training weights
# Initialize
init_seeds()
# Configure run
train_path = localconfig.train_path
test_path = localconfig.test_path
nc = 1
results_file = 'results/%s.txt'%opt.name
# Initialize model
if opt.model != '':
model = getattr(mymodel, opt.model)(not opt.no_share).to(device)
else:
if opt.bypass:
model = UltraNetBypass_MixQ(not opt.no_share).to(device)
else:
model = UltraNet_MixQ(not opt.no_share).to(device)
# Optimizer
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in dict(model.named_parameters()).items():
if '.bias' in k:
pg2 += [v] # biases
elif 'Conv2d.weight' in k:
pg1 += [v] # apply weight_decay
elif 'alpha' not in k:
pg0 += [v] # all else
if opt.adam:
# hyp['lr0'] *= 0.1 # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
optimizer.param_groups[2]['lr'] *= 2.0 # bias lr
# arch_optimizer
alpha_params = []
for name, param in model.named_parameters():
if 'alpha' in name:
alpha_params += [param]
arch_optimizer = torch.optim.SGD(alpha_params, opt.lra, momentum=hyp['momentum'],
weight_decay=hyp['weight_decay'])
del pg0, pg1, pg2
start_epoch = 0
test_best_iou = 0.0
# load weights
if weights.endswith('.pt'): # pytorch format
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
chkpt = torch.load(weights, map_location=device)
# load model
try:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
if opt.resume:
# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
# Scheduler https://github.com/ultralytics/yolov3/issues/238
lf = lambda x: (1 + math.cos(x * math.pi / epochs)) / 2 * 0.999 + 0.001 # cosine https://arxiv.org/pdf/1812.01187.pdf
lf2 = lambda x: (1 + math.cos(x * math.pi / epochs)) / 2 * 0.9 + 0.1 # cosine https://arxiv.org/pdf/1812.01187.pdf
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch
arch_scheduler = lr_scheduler.LambdaLR(arch_optimizer, lr_lambda=lf2)
arch_scheduler.last_epoch = start_epoch
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:5000', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
# Dataloader
#batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count()//4, batch_size//4 if batch_size > 1 else 0, 8]) # number of workers
# Testloader
testset = LoadImagesAndLabels(test_path, img_size_test, batch_size,
hyp=hyp,
rect=False,
cache_images=opt.cache_images,
single_cls=opt.single_cls)
testloader = torch.utils.data.DataLoader(testset,
batch_size=batch_size,
num_workers=0,
pin_memory=True,
collate_fn=testset.collate_fn)
# Dataset
dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
cache_images=opt.cache_images,
single_cls=opt.single_cls)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Start training
nb = len(dataloader)
prebias = start_epoch == 0
model.nc = nc # attach number of classes to model
model.arc = opt.arc # attach yolo architecture
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
maps = np.zeros(nc) # mAP per class
# torch.autograd.set_detect_anomaly(True)
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
t0 = time.time()
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
print('Using %g dataloader workers' % nw)
print('Starting training for %g epochs...' % epochs)
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
model.gr = 1 - (1 + math.cos(min(epoch * 2, epochs) * math.pi / epochs)) / 2 # GIoU <-> 1.0 loss ratio
# Prebias
if prebias:
ne = max(round(30 / nb), 3) # number of prebias epochs
ps = np.interp(epoch, [0, ne], [0.1, hyp['lr0'] * 2]), \
np.interp(epoch, [0, ne], [0.9, hyp['momentum']]) # prebias settings (lr=0.1, momentum=0.9)
if epoch == ne:
# print_model_biases(model)
prebias = False
# Bias optimizer settings
optimizer.param_groups[2]['lr'] = ps[0]
if optimizer.param_groups[2].get('momentum') is not None: # for SGD but not Adam
optimizer.param_groups[2]['momentum'] = ps[1]
curr_lr = optimizer.param_groups[0]['lr']
curr_lra = arch_optimizer.param_groups[0]['lr']
print(f'lr:{curr_lr}, lra:{curr_lra}')
mloss = torch.zeros(4).to(device) # mean losses
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'iouloss', 'objloss', 'triou', 'mloss', 'targets', 'img_size'))
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 256.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Scale loss by nominal batch_size of 64
loss *= batch_size / 64
# complexity penalty
if opt.complexity_decay != 0:
loss_complexity = opt.complexity_decay * model.complexity_loss()
loss += loss_complexity * 4.0
if opt.complexity_decay_trivial != 0:
loss_complexity_trivial = opt.complexity_decay_trivial * model.complexity_loss_trivial()
loss += loss_complexity_trivial * 4.0
if opt.bram_decay != 0:
if hasattr(model, 'module'):
loss_bram = opt.bram_decay * model.bram_loss()
loss += loss_bram * 4.0
loss.backward()
# Optimize accumulated gradient
if ni % accumulate == 0:
optimizer.step()
arch_optimizer.step()
optimizer.zero_grad()
arch_optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
pbar.set_description(s)
# end batch ------------------------------------------------------------------------------------------------
print('========= architecture =========')
if hasattr(model, 'module'):
best_arch, bitops, bita, bitw, mixbitops, mixbita, mixbitw, dsps, mixdsps, mixbram_weight, mixbram_cache = model.module.fetch_best_arch()
else:
best_arch, bitops, bita, bitw, mixbitops, mixbita, mixbitw, dsps, mixdsps, mixbram_weight, mixbram_cache = model.fetch_best_arch()
print('best model with bitops: {:.3f}M, bita: {:.3f}K, bitw: {:.3f}M, dsps: {:.3f}M'.format(
bitops, bita, bitw, dsps))
print('expected model with bitops: {:.3f}M, bita: {:.3f}K, bitw: {:.3f}M, dsps: {:.3f}M, bram_wa:({:.3f},{:.3f})K'.format(
mixbitops, mixbita, mixbitw, mixdsps, mixbram_weight, mixbram_cache))
bestw_str = "".join([str(x+2) for x in best_arch["best_weight"]])
besta_str = "".join([str(x+2) for x in best_arch["best_activ"]])
print(f'best_weight: {best_arch["best_weight"]}')
print(f'best_activ: {best_arch["best_activ"]}')
# Update scheduler
scheduler.step()
arch_scheduler.step()
train_iou = mloss[2]
# Process epoch results
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
results = test.test(batch_size=batch_size,
img_size=img_size_test,
model=model,
dataloader=testloader)
# Write epoch results
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * len(results) % results + '\n') # test_losses=(iou, loss_sum, lobj, lcls)
# Update best mAP
results = torch.tensor(results, device = 'cpu')
test_iou = results[0]
if test_iou > test_best_iou:
test_best_iou = test_iou
# Save training results
save = (not opt.nosave) or (final_epoch)
if save:
with open(results_file, 'r') as f:
# Create checkpoint
chkpt = {'epoch': epoch,
'training_results': f.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict(),
'extra': {'time': time.ctime(), 'name': opt.name, 'bestw': bestw_str, 'besta': besta_str}}
# Save last checkpoint
torch.save(chkpt, wdir + '%s_last.pt'%opt.name)
if test_iou == test_best_iou:
torch.save(chkpt, wdir + '%s_best.pt'%opt.name)
# Delete checkpoint
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
n = opt.name
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
with open('results.csv', 'a') as f:
print("mixed,%s,%d/%d, , , , ,%.1f,%.1f, ,%s,%s,%d,%d,%.3f,%.3f"%
(opt.name,epochs-1,epochs,train_iou*100,(test_iou+test_best_iou)*50,
bestw_str,besta_str,
int(round(bitops)), int(round(mixbitops)), dsps, mixdsps), file=f)
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--bypass', action='store_true', help='use bypass model')
parser.add_argument('--epochs', type=int, default=35) # 500200 batches at bs 16, 117263 COCO images = 273 epochs
parser.add_argument('--batch-size', type=int, default=64) # effective bs = batch_size * accumulate = 16 * 4 = 64
parser.add_argument('--accumulate', type=int, default=1, help='batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-tiny-1cls_1.cfg', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco2017.data', help='*.data path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320], help='train and test image-sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--arc', type=str, default='default', help='yolo architecture') # default, uCE, uBCE
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--var', type=float, help='debug variable')
parser.add_argument('--complexity-decay', '--cd', default=0, type=float, metavar='W', help='complexity decay (default: 0)')
parser.add_argument('--complexity-decay-trivial', '--cdt', default=0, type=float, metavar='W', help='complexity decay (default: 0)')
parser.add_argument('--bram-decay', '--bd', default=0, type=float, metavar='W', help='complexity decay (default: 0)')
parser.add_argument('--lra', '--learning-rate-alpha', default=0.01, type=float, metavar='LR', help='initial alpha learning rate')
parser.add_argument('--no-share', action='store_true', help='no share weight quantization')
parser.add_argument('--model', type=str, default='', help='use specific model')
opt = parser.parse_args()
last = wdir + 'last_%s.pt'%opt.name
opt.weights = last if opt.resume else opt.weights
print(opt)
device = torch_utils.select_device(opt.device, batch_size=opt.batch_size)
train() # train normally