forked from liucheng/DeepBurning-MixQ
1018 lines
40 KiB
Python
1018 lines
40 KiB
Python
import glob
|
|
import math
|
|
import os
|
|
import random
|
|
import shutil
|
|
import time
|
|
from pathlib import Path
|
|
from threading import Thread
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ExifTags
|
|
from torch.utils.data import Dataset
|
|
from tqdm import tqdm
|
|
|
|
from yolo_utils import xyxy2xywh, xywh2xyxy
|
|
|
|
import xml.etree.ElementTree
|
|
|
|
help_url = 'https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data'
|
|
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
|
vid_formats = ['.mov', '.avi', '.mp4']
|
|
|
|
def getidx(fname):
|
|
for n in range(len(fname)):
|
|
if fname[n:].isdigit():
|
|
return int(fname[n:])
|
|
|
|
def analyze_xml(file_path):
|
|
meta = xml.etree.ElementTree.parse(file_path).getroot()
|
|
size = meta.find('size')
|
|
img_width = int(size.find('width').text)
|
|
img_height = int(size.find('height').text)
|
|
|
|
obj = meta.find('object')
|
|
box = obj.find('bndbox')
|
|
fname = meta.find('filename').text
|
|
cls = obj.find('name').text
|
|
idx = getidx(fname)
|
|
xmin = int(box.find('xmin').text)
|
|
ymin = int(box.find('ymin').text)
|
|
xmax = int(box.find('xmax').text)
|
|
ymax = int(box.find('ymax').text)
|
|
|
|
x = (xmin + xmax) / 2 / img_width
|
|
y = (ymin + ymax) / 2 / img_height
|
|
bb_width = (xmax - xmin) / img_width
|
|
bb_height = (ymax - ymin) / img_height
|
|
|
|
return np.array([[0, x, y, bb_width, bb_height, 0]], dtype='float32'), cls, idx
|
|
|
|
# Get orientation exif tag
|
|
for orientation in ExifTags.TAGS.keys():
|
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
|
break
|
|
|
|
|
|
def exif_size(img):
|
|
# Returns exif-corrected PIL size
|
|
s = img.size # (width, height)
|
|
try:
|
|
rotation = dict(img._getexif().items())[orientation]
|
|
if rotation == 6: # rotation 270
|
|
s = (s[1], s[0])
|
|
elif rotation == 8: # rotation 90
|
|
s = (s[1], s[0])
|
|
except:
|
|
pass
|
|
|
|
return s
|
|
|
|
|
|
class LoadImages: # for inference
|
|
def __init__(self, path, img_size=416):
|
|
path = str(Path(path)) # os-agnostic
|
|
files = []
|
|
if os.path.isdir(path):
|
|
files = sorted(glob.glob(os.path.join(path, '*.*')))
|
|
elif os.path.isfile(path):
|
|
files = [path]
|
|
|
|
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
|
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
|
nI, nV = len(images), len(videos)
|
|
|
|
self.img_size = img_size
|
|
self.files = images + videos
|
|
self.nF = nI + nV # number of files
|
|
self.video_flag = [False] * nI + [True] * nV
|
|
self.mode = 'images'
|
|
if any(videos):
|
|
self.new_video(videos[0]) # new video
|
|
else:
|
|
self.cap = None
|
|
assert self.nF > 0, 'No images or videos found in ' + path
|
|
|
|
def __iter__(self):
|
|
self.count = 0
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.count == self.nF:
|
|
raise StopIteration
|
|
path = self.files[self.count]
|
|
|
|
if self.video_flag[self.count]:
|
|
# Read video
|
|
self.mode = 'video'
|
|
ret_val, img0 = self.cap.read()
|
|
if not ret_val:
|
|
self.count += 1
|
|
self.cap.release()
|
|
if self.count == self.nF: # last video
|
|
raise StopIteration
|
|
else:
|
|
path = self.files[self.count]
|
|
self.new_video(path)
|
|
ret_val, img0 = self.cap.read()
|
|
|
|
self.frame += 1
|
|
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')
|
|
|
|
else:
|
|
# Read image
|
|
self.count += 1
|
|
img0 = cv2.imread(path) # BGR
|
|
assert img0 is not None, 'Image Not Found ' + path
|
|
print('image %g/%g %s: ' % (self.count, self.nF, path), end='')
|
|
|
|
# Padded resize
|
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
|
|
|
# Convert
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
|
|
return path, img, img0, self.cap
|
|
|
|
def new_video(self, path):
|
|
self.frame = 0
|
|
self.cap = cv2.VideoCapture(path)
|
|
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
def __len__(self):
|
|
return self.nF # number of files
|
|
|
|
|
|
class LoadWebcam: # for inference
|
|
def __init__(self, pipe=0, img_size=416):
|
|
self.img_size = img_size
|
|
|
|
if pipe == '0':
|
|
pipe = 0 # local camera
|
|
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
|
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
|
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
|
|
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
|
|
|
# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
|
|
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
|
|
|
|
# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
|
|
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
|
|
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
|
|
|
|
self.pipe = pipe
|
|
self.cap = cv2.VideoCapture(pipe) # video capture object
|
|
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
|
|
|
def __iter__(self):
|
|
self.count = -1
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.count += 1
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
self.cap.release()
|
|
cv2.destroyAllWindows()
|
|
raise StopIteration
|
|
|
|
# Read frame
|
|
if self.pipe == 0: # local camera
|
|
ret_val, img0 = self.cap.read()
|
|
img0 = cv2.flip(img0, 1) # flip left-right
|
|
else: # IP camera
|
|
n = 0
|
|
while True:
|
|
n += 1
|
|
self.cap.grab()
|
|
if n % 30 == 0: # skip frames
|
|
ret_val, img0 = self.cap.retrieve()
|
|
if ret_val:
|
|
break
|
|
|
|
# Print
|
|
assert ret_val, 'Camera Error %s' % self.pipe
|
|
img_path = 'webcam.jpg'
|
|
print('webcam %g: ' % self.count, end='')
|
|
|
|
# Padded resize
|
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
|
|
|
# Convert
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return img_path, img, img0, None
|
|
|
|
def __len__(self):
|
|
return 0
|
|
|
|
|
|
class LoadStreams: # multiple IP or RTSP cameras
|
|
def __init__(self, sources='streams.txt', img_size=416):
|
|
self.mode = 'images'
|
|
self.img_size = img_size
|
|
|
|
if os.path.isfile(sources):
|
|
with open(sources, 'r') as f:
|
|
sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
|
|
else:
|
|
sources = [sources]
|
|
|
|
n = len(sources)
|
|
self.imgs = [None] * n
|
|
self.sources = sources
|
|
for i, s in enumerate(sources):
|
|
# Start the thread to read frames from the video stream
|
|
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
|
cap = cv2.VideoCapture(0 if s == '0' else s)
|
|
assert cap.isOpened(), 'Failed to open %s' % s
|
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
|
_, self.imgs[i] = cap.read() # guarantee first frame
|
|
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
|
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
|
thread.start()
|
|
print('') # newline
|
|
|
|
# check for common shapes
|
|
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
|
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
|
if not self.rect:
|
|
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
|
|
|
def update(self, index, cap):
|
|
# Read next stream frame in a daemon thread
|
|
n = 0
|
|
while cap.isOpened():
|
|
n += 1
|
|
# _, self.imgs[index] = cap.read()
|
|
cap.grab()
|
|
if n == 4: # read every 4th frame
|
|
_, self.imgs[index] = cap.retrieve()
|
|
n = 0
|
|
time.sleep(0.01) # wait time
|
|
|
|
def __iter__(self):
|
|
self.count = -1
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.count += 1
|
|
img0 = self.imgs.copy()
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
cv2.destroyAllWindows()
|
|
raise StopIteration
|
|
|
|
# Letterbox
|
|
img = [letterbox(x, new_shape=self.img_size, auto=self.rect, interp=cv2.INTER_LINEAR_EXACT)[0] for x in img0]
|
|
|
|
# Stack
|
|
img = np.stack(img, 0)
|
|
|
|
# Convert
|
|
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return self.sources, img, img0, None
|
|
|
|
def __len__(self):
|
|
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
|
|
|
|
class LoadTestImagesAndLabels(Dataset): # for training/testing
|
|
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
|
cache_labels=True, cache_images=False, single_cls=False):
|
|
# path = str(Path(path)) # os-agnostic
|
|
# assert os.path.isfile(path), 'File not found %s. See %s' % (path, help_url)
|
|
# with open(path, 'r') as f:
|
|
# self.img_files = [x.replace('/', os.sep) for x in f.read().splitlines() # os-agnostic
|
|
# if os.path.splitext(x)[-1].lower() in img_formats]
|
|
|
|
# 读图片文件路径
|
|
self.img_files = []
|
|
dir_path = path
|
|
for file in os.listdir(path):
|
|
#dir_path = os.path.join(path, dir)
|
|
#if os.path.isdir(dir_path):
|
|
#for file in os.listdir(dir_path):
|
|
file_path = os.path.join(dir_path, file)
|
|
file_suf = file_path.split('.')[-1]
|
|
if file_suf == 'jpg':
|
|
self.img_files.append(file_path)
|
|
# 图片数量
|
|
n = len(self.img_files)
|
|
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
|
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
|
nb = bi[-1] + 1 # number of batches
|
|
|
|
self.n = n
|
|
self.batch = bi # batch index of image
|
|
self.img_size = img_size
|
|
self.augment = augment
|
|
self.hyp = hyp
|
|
self.image_weights = image_weights
|
|
self.rect = False if image_weights else rect
|
|
|
|
# Define labels label文件
|
|
self.label_files = [x.replace(os.path.splitext(x)[-1], '.xml')
|
|
for x in self.img_files]
|
|
|
|
|
|
# Preload labels (required for weighted CE training)
|
|
self.imgs = [None] * n
|
|
self.labels = [None] * n
|
|
# 将labels加载到内存
|
|
if cache_labels or image_weights: # cache labels for faster training
|
|
self.labels = [np.zeros((0, 5))] * n
|
|
extract_bounding_boxes = False
|
|
create_datasubset = False
|
|
pbar = tqdm(self.label_files, desc='Caching labels')
|
|
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
|
for i, file in enumerate(pbar):
|
|
# try:
|
|
# with open(file, 'r') as f:
|
|
# l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
|
# except:
|
|
# nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
|
|
# continue
|
|
# 读取xml中的标签
|
|
l = analyze_xml(file)
|
|
|
|
if l.shape[0]:
|
|
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
|
assert (l >= 0).all(), 'negative labels: %s' % file
|
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
|
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
|
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
|
|
if single_cls:
|
|
l[:, 0] = 0 # force dataset into single-class mode
|
|
self.labels[i] = l
|
|
nf += 1 # file found
|
|
|
|
else:
|
|
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
|
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
|
|
|
pbar.desc = 'Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
|
nf, nm, ne, nd, n)
|
|
assert nf > 0, 'No labels found. See %s' % help_url
|
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
|
if cache_images: # if training
|
|
gb = 0 # Gigabytes of cached images
|
|
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
|
|
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
|
for i in pbar: # max 10k images
|
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
|
|
gb += self.imgs[i].nbytes
|
|
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
|
|
|
def __len__(self):
|
|
return len(self.img_files)
|
|
|
|
# def __iter__(self):
|
|
# self.count = -1
|
|
# print('ran dataset iter')
|
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
|
# return self
|
|
|
|
def __getitem__(self, index):
|
|
# if self.image_weights:
|
|
# index = self.indices[index]
|
|
|
|
img_path = self.img_files[index]
|
|
label_path = self.label_files[index]
|
|
|
|
hyp = self.hyp
|
|
|
|
|
|
# Load image
|
|
img, (h0, w0), (h, w) = load_image(self, index)
|
|
|
|
# print('img shape', img.shape)
|
|
|
|
|
|
# Letterbox
|
|
# w_sca = self.img_size / 32
|
|
# h_sca = int(w_sca*0.6) + 1
|
|
shape = (self.img_size // 2, self.img_size) # final letterboxed shape
|
|
# shape = (208, 416)
|
|
# print('img shape', img.shape)
|
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
|
# Load labels
|
|
labels = []
|
|
if os.path.isfile(label_path): # 这里读了 label
|
|
x = self.labels[index]
|
|
if x is None: # labels not preloaded
|
|
# with open(label_path, 'r') as f:
|
|
# x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
|
x = analyze_xml(label_path)
|
|
|
|
if x.size > 0:
|
|
# Normalized xywh to pixel xyxy format
|
|
labels = x.copy()
|
|
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
|
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
|
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
|
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
|
|
|
if self.augment:
|
|
# Augment imagespace
|
|
img, labels = random_affine(img, labels,
|
|
degrees=hyp['degrees'],
|
|
translate=hyp['translate'],
|
|
scale=hyp['scale'],
|
|
shear=hyp['shear'])
|
|
|
|
# Augment colorspace
|
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
|
|
|
# Apply cutouts
|
|
# if random.random() < 0.9:
|
|
# labels = cutout(img, labels)
|
|
|
|
nL = len(labels) # number of labels
|
|
if nL:
|
|
# convert xyxy to xywh
|
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
|
|
|
|
# Normalize coordinates 0 - 1
|
|
labels[:, [2, 4]] /= img.shape[0] # height
|
|
labels[:, [1, 3]] /= img.shape[1] # width
|
|
|
|
if self.augment:
|
|
# random left-right flip
|
|
lr_flip = True
|
|
if lr_flip and random.random() < 0.5:
|
|
img = np.fliplr(img)
|
|
if nL:
|
|
labels[:, 1] = 1 - labels[:, 1]
|
|
|
|
# random up-down flip
|
|
ud_flip = False
|
|
if ud_flip and random.random() < 0.5:
|
|
img = np.flipud(img)
|
|
if nL:
|
|
labels[:, 2] = 1 - labels[:, 2]
|
|
|
|
labels_out = torch.zeros((nL, 6))
|
|
if nL:
|
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
|
|
|
# print(img.shape)
|
|
# Convert
|
|
img = img.transpose(2, 0, 1) # BGR, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
# print(labels_out)
|
|
# print(labels)
|
|
return torch.from_numpy(img), labels_out, img_path, shapes
|
|
@staticmethod
|
|
def collate_fn(batch):
|
|
img, label, path, shapes = zip(*batch) # transposed
|
|
for i, l in enumerate(label):
|
|
l[:, 0] = i # add target image index for build_targets()
|
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
|
|
|
class LoadImagesAndLabels(Dataset): # for training/testing
|
|
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
|
cache_labels=True, cache_images=False, single_cls=False):
|
|
# path = str(Path(path)) # os-agnostic
|
|
# assert os.path.isfile(path), 'File not found %s. See %s' % (path, help_url)
|
|
# with open(path, 'r') as f:
|
|
# self.img_files = [x.replace('/', os.sep) for x in f.read().splitlines() # os-agnostic
|
|
# if os.path.splitext(x)[-1].lower() in img_formats]
|
|
|
|
# 读图片文件路径
|
|
self.img_files = []
|
|
for dir in os.listdir(path):
|
|
dir_path = os.path.join(path, dir)
|
|
if os.path.isdir(dir_path):
|
|
for file in os.listdir(dir_path):
|
|
file_path = os.path.join(dir_path, file)
|
|
file_suf = file_path.split('.')[-1]
|
|
if file_suf == 'jpg':
|
|
self.img_files.append(file_path)
|
|
# 图片数量
|
|
n = len(self.img_files)
|
|
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
|
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
|
nb = bi[-1] + 1 # number of batches
|
|
|
|
self.n = n
|
|
self.batch = bi # batch index of image
|
|
self.img_size = img_size
|
|
self.augment = augment
|
|
self.hyp = hyp
|
|
self.image_weights = image_weights
|
|
self.rect = False if image_weights else rect
|
|
|
|
# Define labels label文件
|
|
self.label_files = [x.replace(os.path.splitext(x)[-1], '.xml')
|
|
for x in self.img_files]
|
|
|
|
cls_range={}
|
|
|
|
# Preload labels (required for weighted CE training)
|
|
self.imgs = [None] * n
|
|
self.labels = [None] * n
|
|
lcls = [None] * n
|
|
lidx = [None] * n
|
|
# 将labels加载到内存
|
|
if cache_labels or image_weights: # cache labels for faster training
|
|
self.labels = [np.zeros((0, 6))] * n
|
|
extract_bounding_boxes = False
|
|
create_datasubset = False
|
|
pbar = tqdm(self.label_files, desc='Caching labels')
|
|
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
|
for i, file in enumerate(pbar):
|
|
# try:
|
|
# with open(file, 'r') as f:
|
|
# l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
|
# except:
|
|
# nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
|
|
# continue
|
|
# 读取xml中的标签
|
|
l, cls, idx = analyze_xml(file)
|
|
|
|
lcls[i] = cls
|
|
lidx[i] = idx
|
|
|
|
if cls not in cls_range:
|
|
cls_range[cls]=(idx, idx) # min, max
|
|
else:
|
|
mi,mx = cls_range[cls]
|
|
cls_range[cls]=(min(mi, idx), max(mx, idx))
|
|
|
|
if l.shape[0]:
|
|
assert l.shape[1] == 6, '> 6 label columns: %s' % file # modify to 6 (bidx, *(4*box), weight)
|
|
assert (l >= 0).all(), 'negative labels: %s' % file
|
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
|
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
|
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
|
|
if single_cls:
|
|
l[:, 0] = 0 # force dataset into single-class mode
|
|
self.labels[i] = l
|
|
nf += 1 # file found
|
|
|
|
else:
|
|
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
|
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
|
|
|
pbar.desc = 'Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
|
nf, nm, ne, nd, n)
|
|
|
|
print(cls_range)
|
|
for i in range(len(self.label_files)): # reweight order
|
|
imin, imax = cls_range[lcls[i]]
|
|
idx = lidx[i]
|
|
if lcls[i]!='0':
|
|
self.labels[i][0,5] = ((idx-imin)/(imax-imin)*2 + 1)/2 # weight in [0.5,1.5] by order
|
|
else: # test
|
|
self.labels[i][0,5] = 1
|
|
|
|
assert nf > 0, 'No labels found. See %s' % help_url
|
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
|
if cache_images: # if training
|
|
gb = 0 # Gigabytes of cached images
|
|
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
|
|
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
|
for i in pbar: # max 10k images
|
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
|
|
gb += self.imgs[i].nbytes
|
|
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
|
|
|
def __len__(self):
|
|
return len(self.img_files)
|
|
|
|
# def __iter__(self):
|
|
# self.count = -1
|
|
# print('ran dataset iter')
|
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
|
# return self
|
|
|
|
def __getitem__(self, index):
|
|
# if self.image_weights:
|
|
# index = self.indices[index]
|
|
|
|
img_path = self.img_files[index]
|
|
label_path = self.label_files[index]
|
|
|
|
hyp = self.hyp
|
|
|
|
|
|
# Load image
|
|
img, (h0, w0), (h, w) = load_image(self, index)
|
|
|
|
# print('img shape', img.shape)
|
|
|
|
|
|
# Letterbox
|
|
# w_sca = self.img_size / 32
|
|
# h_sca = int(w_sca*0.6) + 1
|
|
shape = (self.img_size // 2, self.img_size) # final letterboxed shape
|
|
# shape = (208, 416)
|
|
# print('img shape', img.shape)
|
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
|
# Load labels
|
|
labels = []
|
|
if os.path.isfile(label_path): # 这里读了 label
|
|
x = self.labels[index]
|
|
if x is None: # labels not preloaded
|
|
# with open(label_path, 'r') as f:
|
|
# x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
|
x = analyze_xml(label_path)
|
|
|
|
if x.size > 0:
|
|
# Normalized xywh to pixel xyxy format
|
|
labels = x.copy()
|
|
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
|
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
|
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
|
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
|
|
|
if self.augment:
|
|
# Augment imagespace
|
|
img, labels = random_affine(img, labels,
|
|
degrees=hyp['degrees'],
|
|
translate=hyp['translate'],
|
|
scale=hyp['scale'],
|
|
shear=hyp['shear'])
|
|
|
|
# Augment colorspace
|
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
|
|
|
# Apply cutouts
|
|
# if random.random() < 0.9:
|
|
# labels = cutout(img, labels)
|
|
|
|
nL = len(labels) # number of labels
|
|
if nL:
|
|
# convert xyxy to xywh
|
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
|
|
|
|
# Normalize coordinates 0 - 1
|
|
labels[:, [2, 4]] /= img.shape[0] # height
|
|
labels[:, [1, 3]] /= img.shape[1] # width
|
|
|
|
if self.augment:
|
|
# random left-right flip
|
|
lr_flip = True
|
|
if lr_flip and random.random() < 0.5:
|
|
img = np.fliplr(img)
|
|
if nL:
|
|
labels[:, 1] = 1 - labels[:, 1]
|
|
|
|
# random up-down flip
|
|
ud_flip = False
|
|
if ud_flip and random.random() < 0.5:
|
|
img = np.flipud(img)
|
|
if nL:
|
|
labels[:, 2] = 1 - labels[:, 2]
|
|
|
|
labels_out = torch.zeros((nL, 7))
|
|
if nL:
|
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
|
|
|
# print(img.shape)
|
|
# Convert
|
|
img = img.transpose(2, 0, 1) # BGR, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
# print(labels_out)
|
|
# print(labels)
|
|
return torch.from_numpy(img), labels_out, img_path, shapes
|
|
|
|
@staticmethod
|
|
def collate_fn(batch):
|
|
img, label, path, shapes = zip(*batch) # transposed
|
|
for i, l in enumerate(label):
|
|
l[:, 0] = i # add target image index for build_targets()
|
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
|
|
|
|
|
def load_image(self, index):
|
|
# loads 1 image from dataset, returns img, original hw, resized hw
|
|
img = self.imgs[index]
|
|
if img is None: # not cached
|
|
img_path = self.img_files[index]
|
|
img = cv2.imread(img_path) # BGR
|
|
assert img is not None, 'Image Not Found ' + img_path
|
|
h0, w0 = img.shape[:2] # orig hw
|
|
# r = self.img_size / max(h0, w0) # resize image to img_size
|
|
|
|
interp = cv2.INTER_LINEAR_EXACT if self.augment else cv2.INTER_LINEAR_EXACT # LINEAR for training, AREA for testing
|
|
img = cv2.resize(img, (self.img_size, self.img_size // 2), interpolation=interp)
|
|
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
|
else:
|
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
|
|
|
|
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
|
x = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
|
img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x).clip(None, 255).astype(np.uint8)
|
|
np.clip(img_hsv[:, :, 0], None, 179, out=img_hsv[:, :, 0]) # inplace hue clip (0 - 179 deg)
|
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
|
|
|
|
|
def load_mosaic(self, index):
|
|
# loads images in a mosaic
|
|
|
|
labels4 = []
|
|
s = self.img_size
|
|
xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)] # mosaic center x, y
|
|
img4 = np.zeros((s * 2, s * 2, 3), dtype=np.uint8) + 128 # base image with 4 tiles
|
|
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
|
|
for i, index in enumerate(indices):
|
|
# Load image
|
|
img, _, (h, w) = load_image(self, index)
|
|
|
|
# place img in img4
|
|
if i == 0: # top left
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
|
elif i == 1: # top right
|
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
elif i == 2: # bottom left
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
|
|
elif i == 3: # bottom right
|
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
padw = x1a - x1b
|
|
padh = y1a - y1b
|
|
|
|
# Load labels
|
|
label_path = self.label_files[index]
|
|
if os.path.isfile(label_path):
|
|
x = self.labels[index]
|
|
if x is None: # labels not preloaded
|
|
with open(label_path, 'r') as f:
|
|
x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
|
|
|
if x.size > 0:
|
|
# Normalized xywh to pixel xyxy format
|
|
labels = x.copy()
|
|
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
|
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
|
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
|
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
|
else:
|
|
labels = np.zeros((0, 5), dtype=np.float32)
|
|
labels4.append(labels)
|
|
|
|
# Concat/clip labels
|
|
if len(labels4):
|
|
labels4 = np.concatenate(labels4, 0)
|
|
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
|
|
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
|
|
|
|
# Augment
|
|
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
|
img4, labels4 = random_affine(img4, labels4,
|
|
degrees=self.hyp['degrees'] * 1,
|
|
translate=self.hyp['translate'] * 1,
|
|
scale=self.hyp['scale'] * 1,
|
|
shear=self.hyp['shear'] * 1,
|
|
border=-s // 2) # border to remove
|
|
|
|
return img4, labels4
|
|
|
|
|
|
def letterbox(img, new_shape=(416, 416), color=(128, 128, 128),
|
|
auto=True, scaleFill=False, scaleup=True, interp=cv2.INTER_AREA):
|
|
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
|
shape = img.shape[:2] # current shape [height, width]
|
|
if isinstance(new_shape, int):
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
# Scale ratio (new / old)
|
|
r = max(new_shape) / max(shape)
|
|
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
|
r = min(r, 1.0)
|
|
|
|
# Compute padding
|
|
ratio = r, r # width, height ratios
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
if auto: # minimum rectangle
|
|
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
|
|
elif scaleFill: # stretch
|
|
dw, dh = 0.0, 0.0
|
|
new_unpad = new_shape
|
|
ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios
|
|
|
|
dw /= 2 # divide padding into 2 sides
|
|
dh /= 2
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
img = cv2.resize(img, new_unpad, interpolation=interp) # INTER_AREA is better, INTER_LINEAR is faster
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
|
return img, ratio, (dw, dh)
|
|
|
|
|
|
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0):
|
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
|
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
|
|
|
|
if targets is None: # targets = [cls, xyxy]
|
|
targets = []
|
|
height = img.shape[0] + border * 2
|
|
width = img.shape[1] + border * 2
|
|
|
|
# Rotation and Scale
|
|
R = np.eye(3)
|
|
a = random.uniform(-degrees, degrees)
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
|
s = random.uniform(1 - scale, 1 + scale)
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
|
|
|
|
# Translation 平移
|
|
T = np.eye(3)
|
|
T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border # x translation (pixels)
|
|
T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border # y translation (pixels)
|
|
|
|
# Shear 剪切
|
|
S = np.eye(3)
|
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
|
|
|
# Combined rotation matrix
|
|
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
|
|
changed = (border != 0) or (M != np.eye(3)).any()
|
|
if changed:
|
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA, borderValue=(128, 128, 128))
|
|
|
|
# Transform label coordinates
|
|
n = len(targets)
|
|
if n:
|
|
# warp points
|
|
xy = np.ones((n * 4, 3))
|
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
|
xy = (xy @ M.T)[:, :2].reshape(n, 8)
|
|
|
|
# create new boxes
|
|
x = xy[:, [0, 2, 4, 6]]
|
|
y = xy[:, [1, 3, 5, 7]]
|
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
|
|
|
# # apply angle-based reduction of bounding boxes
|
|
# radians = a * math.pi / 180
|
|
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
|
# x = (xy[:, 2] + xy[:, 0]) / 2
|
|
# y = (xy[:, 3] + xy[:, 1]) / 2
|
|
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
|
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
|
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
|
|
|
# reject warped points outside of image
|
|
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
|
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
|
w = xy[:, 2] - xy[:, 0]
|
|
h = xy[:, 3] - xy[:, 1]
|
|
area = w * h
|
|
area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
|
|
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio
|
|
i = (w > 3) & (h > 3) & (area / (area0 + 1e-16) > 0.2) & (ar < 10)
|
|
|
|
targets = targets[i]
|
|
targets[:, 1:5] = xy[i]
|
|
|
|
return img, targets
|
|
|
|
|
|
def cutout(image, labels):
|
|
# https://arxiv.org/abs/1708.04552
|
|
# https://github.com/hysts/pytorch_cutout/blob/master/dataloader.py
|
|
# https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509
|
|
h, w = image.shape[:2]
|
|
|
|
def bbox_ioa(box1, box2):
|
|
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
|
box2 = box2.transpose()
|
|
|
|
# Get the coordinates of bounding boxes
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
|
|
# Intersection area
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
|
|
|
# box2 area
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
|
|
|
# Intersection over box2 area
|
|
return inter_area / box2_area
|
|
|
|
# create random masks
|
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
|
for s in scales:
|
|
mask_h = random.randint(1, int(h * s))
|
|
mask_w = random.randint(1, int(w * s))
|
|
|
|
# box
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
|
xmax = min(w, xmin + mask_w)
|
|
ymax = min(h, ymin + mask_h)
|
|
|
|
# apply random color mask
|
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
|
|
|
# return unobscured labels
|
|
if len(labels) and s > 0.03:
|
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
|
|
|
return labels
|
|
|
|
|
|
def reduce_img_size(path='../data/sm4/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
|
|
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
|
|
path_new = path + '_reduced' # reduced images path
|
|
create_folder(path_new)
|
|
for f in tqdm(glob.glob('%s/*.*' % path)):
|
|
try:
|
|
img = cv2.imread(f)
|
|
h, w = img.shape[:2]
|
|
r = img_size / max(h, w) # size ratio
|
|
if r < 1.0:
|
|
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
|
|
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
|
|
cv2.imwrite(fnew, img)
|
|
except:
|
|
print('WARNING: image failure %s' % f)
|
|
|
|
|
|
def convert_images2bmp(): # from utils.datasets import *; convert_images2bmp()
|
|
# Save images
|
|
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
|
|
# for path in ['../coco/images/val2014', '../coco/images/train2014']:
|
|
for path in ['../data/sm4/images', '../data/sm4/background']:
|
|
create_folder(path + 'bmp')
|
|
for ext in formats: # ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
|
for f in tqdm(glob.glob('%s/*%s' % (path, ext)), desc='Converting %s' % ext):
|
|
cv2.imwrite(f.replace(ext.lower(), '.bmp').replace(path, path + 'bmp'), cv2.imread(f))
|
|
|
|
# Save labels
|
|
# for path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
|
|
for file in ['../data/sm4/out_train.txt', '../data/sm4/out_test.txt']:
|
|
with open(file, 'r') as f:
|
|
lines = f.read()
|
|
# lines = f.read().replace('2014/', '2014bmp/') # coco
|
|
lines = lines.replace('/images', '/imagesbmp')
|
|
lines = lines.replace('/background', '/backgroundbmp')
|
|
for ext in formats:
|
|
lines = lines.replace(ext, '.bmp')
|
|
with open(file.replace('.txt', 'bmp.txt'), 'w') as f:
|
|
f.write(lines)
|
|
|
|
|
|
def recursive_dataset2bmp(dataset='../data/sm4_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
|
|
# Converts dataset to bmp (for faster training)
|
|
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
|
|
for a, b, files in os.walk(dataset):
|
|
for file in tqdm(files, desc=a):
|
|
p = a + '/' + file
|
|
s = Path(file).suffix
|
|
if s == '.txt': # replace text
|
|
with open(p, 'r') as f:
|
|
lines = f.read()
|
|
for f in formats:
|
|
lines = lines.replace(f, '.bmp')
|
|
with open(p, 'w') as f:
|
|
f.write(lines)
|
|
elif s in formats: # replace image
|
|
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
|
|
if s != '.bmp':
|
|
os.system("rm '%s'" % p)
|
|
|
|
|
|
def imagelist2folder(path='data/coco_64img.txt'): # from utils.datasets import *; imagelist2folder()
|
|
# Copies all the images in a text file (list of images) into a folder
|
|
create_folder(path[:-4])
|
|
with open(path, 'r') as f:
|
|
for line in f.read().splitlines():
|
|
os.system('cp "%s" %s' % (line, path[:-4]))
|
|
print(line)
|
|
|
|
|
|
def create_folder(path='./new_folder'):
|
|
# Create folder
|
|
if os.path.exists(path):
|
|
shutil.rmtree(path) # delete output folder
|
|
os.makedirs(path) # make new output folder
|