310 lines
8.4 KiB
Markdown
310 lines
8.4 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# 模型输出
|
|
|
|
所有模型的输出都是 [`~utils.ModelOutput`] 的子类的实例。这些是包含模型返回的所有信息的数据结构,但也可以用作元组或字典。
|
|
|
|
让我们看一个例子:
|
|
|
|
```python
|
|
from transformers import BertTokenizer, BertForSequenceClassification
|
|
import torch
|
|
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
|
model = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
|
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
|
outputs = model(**inputs, labels=labels)
|
|
```
|
|
|
|
`outputs` 对象是 [`~modeling_outputs.SequenceClassifierOutput`],如下面该类的文档中所示,它表示它有一个可选的 `loss`,一个 `logits`,一个可选的 `hidden_states` 和一个可选的 `attentions` 属性。在这里,我们有 `loss`,因为我们传递了 `labels`,但我们没有 `hidden_states` 和 `attentions`,因为我们没有传递 `output_hidden_states=True` 或 `output_attentions=True`。
|
|
|
|
<Tip>
|
|
|
|
当传递 `output_hidden_states=True` 时,您可能希望 `outputs.hidden_states[-1]` 与 `outputs.last_hidden_states` 完全匹配。然而,这并不总是成立。一些模型在返回最后的 hidden state时对其应用归一化或其他后续处理。
|
|
|
|
</Tip>
|
|
|
|
|
|
您可以像往常一样访问每个属性,如果模型未返回该属性,您将得到 `None`。在这里,例如,`outputs.loss` 是模型计算的损失,而 `outputs.attentions` 是 `None`。
|
|
|
|
当将我们的 `outputs` 对象视为元组时,它仅考虑那些没有 `None` 值的属性。例如这里它有两个元素,`loss` 和 `logits`,所以
|
|
|
|
```python
|
|
outputs[:2]
|
|
```
|
|
|
|
将返回元组 `(outputs.loss, outputs.logits)`。
|
|
|
|
将我们的 `outputs` 对象视为字典时,它仅考虑那些没有 `None` 值的属性。例如在这里它有两个键,分别是 `loss` 和 `logits`。
|
|
|
|
我们在这里记录了被多个类型模型使用的通用模型输出。特定输出类型在其相应的模型页面上有文档。
|
|
|
|
## ModelOutput
|
|
|
|
[[autodoc]] utils.ModelOutput
|
|
- to_tuple
|
|
|
|
## BaseModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutput
|
|
|
|
## BaseModelOutputWithPooling
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutputWithPooling
|
|
|
|
## BaseModelOutputWithCrossAttentions
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutputWithCrossAttentions
|
|
|
|
## BaseModelOutputWithPoolingAndCrossAttentions
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions
|
|
|
|
## BaseModelOutputWithPast
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutputWithPast
|
|
|
|
## BaseModelOutputWithPastAndCrossAttentions
|
|
|
|
[[autodoc]] modeling_outputs.BaseModelOutputWithPastAndCrossAttentions
|
|
|
|
## Seq2SeqModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqModelOutput
|
|
|
|
## CausalLMOutput
|
|
|
|
[[autodoc]] modeling_outputs.CausalLMOutput
|
|
|
|
## CausalLMOutputWithCrossAttentions
|
|
|
|
[[autodoc]] modeling_outputs.CausalLMOutputWithCrossAttentions
|
|
|
|
## CausalLMOutputWithPast
|
|
|
|
[[autodoc]] modeling_outputs.CausalLMOutputWithPast
|
|
|
|
## MaskedLMOutput
|
|
|
|
[[autodoc]] modeling_outputs.MaskedLMOutput
|
|
|
|
## Seq2SeqLMOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqLMOutput
|
|
|
|
## NextSentencePredictorOutput
|
|
|
|
[[autodoc]] modeling_outputs.NextSentencePredictorOutput
|
|
|
|
## SequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_outputs.SequenceClassifierOutput
|
|
|
|
## Seq2SeqSequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqSequenceClassifierOutput
|
|
|
|
## MultipleChoiceModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.MultipleChoiceModelOutput
|
|
|
|
## TokenClassifierOutput
|
|
|
|
[[autodoc]] modeling_outputs.TokenClassifierOutput
|
|
|
|
## QuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.QuestionAnsweringModelOutput
|
|
|
|
## Seq2SeqQuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqQuestionAnsweringModelOutput
|
|
|
|
## Seq2SeqSpectrogramOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqSpectrogramOutput
|
|
|
|
## SemanticSegmenterOutput
|
|
|
|
[[autodoc]] modeling_outputs.SemanticSegmenterOutput
|
|
|
|
## ImageClassifierOutput
|
|
|
|
[[autodoc]] modeling_outputs.ImageClassifierOutput
|
|
|
|
## ImageClassifierOutputWithNoAttention
|
|
|
|
[[autodoc]] modeling_outputs.ImageClassifierOutputWithNoAttention
|
|
|
|
## DepthEstimatorOutput
|
|
|
|
[[autodoc]] modeling_outputs.DepthEstimatorOutput
|
|
|
|
## Wav2Vec2BaseModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.Wav2Vec2BaseModelOutput
|
|
|
|
## XVectorOutput
|
|
|
|
[[autodoc]] modeling_outputs.XVectorOutput
|
|
|
|
## Seq2SeqTSModelOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqTSModelOutput
|
|
|
|
## Seq2SeqTSPredictionOutput
|
|
|
|
[[autodoc]] modeling_outputs.Seq2SeqTSPredictionOutput
|
|
|
|
## SampleTSPredictionOutput
|
|
|
|
[[autodoc]] modeling_outputs.SampleTSPredictionOutput
|
|
|
|
## TFBaseModelOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFBaseModelOutput
|
|
|
|
## TFBaseModelOutputWithPooling
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPooling
|
|
|
|
## TFBaseModelOutputWithPoolingAndCrossAttentions
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
|
|
|
|
## TFBaseModelOutputWithPast
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPast
|
|
|
|
## TFBaseModelOutputWithPastAndCrossAttentions
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions
|
|
|
|
## TFSeq2SeqModelOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFSeq2SeqModelOutput
|
|
|
|
## TFCausalLMOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFCausalLMOutput
|
|
|
|
## TFCausalLMOutputWithCrossAttentions
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
|
|
|
|
## TFCausalLMOutputWithPast
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFCausalLMOutputWithPast
|
|
|
|
## TFMaskedLMOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFMaskedLMOutput
|
|
|
|
## TFSeq2SeqLMOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFSeq2SeqLMOutput
|
|
|
|
## TFNextSentencePredictorOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFNextSentencePredictorOutput
|
|
|
|
## TFSequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFSequenceClassifierOutput
|
|
|
|
## TFSeq2SeqSequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput
|
|
|
|
## TFMultipleChoiceModelOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFMultipleChoiceModelOutput
|
|
|
|
## TFTokenClassifierOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFTokenClassifierOutput
|
|
|
|
## TFQuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFQuestionAnsweringModelOutput
|
|
|
|
## TFSeq2SeqQuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_tf_outputs.TFSeq2SeqQuestionAnsweringModelOutput
|
|
|
|
## FlaxBaseModelOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxBaseModelOutput
|
|
|
|
## FlaxBaseModelOutputWithPast
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPast
|
|
|
|
## FlaxBaseModelOutputWithPooling
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPooling
|
|
|
|
## FlaxBaseModelOutputWithPastAndCrossAttentions
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions
|
|
|
|
## FlaxSeq2SeqModelOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxSeq2SeqModelOutput
|
|
|
|
## FlaxCausalLMOutputWithCrossAttentions
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
|
|
|
|
## FlaxMaskedLMOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxMaskedLMOutput
|
|
|
|
## FlaxSeq2SeqLMOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxSeq2SeqLMOutput
|
|
|
|
## FlaxNextSentencePredictorOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxNextSentencePredictorOutput
|
|
|
|
## FlaxSequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxSequenceClassifierOutput
|
|
|
|
## FlaxSeq2SeqSequenceClassifierOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput
|
|
|
|
## FlaxMultipleChoiceModelOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxMultipleChoiceModelOutput
|
|
|
|
## FlaxTokenClassifierOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxTokenClassifierOutput
|
|
|
|
## FlaxQuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
|
|
|
|
## FlaxSeq2SeqQuestionAnsweringModelOutput
|
|
|
|
[[autodoc]] modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput
|