6.0 KiB
Audio classification examples
The following examples showcase how to fine-tune Wav2Vec2
for audio classification using PyTorch.
Speech recognition models that have been pretrained in unsupervised fashion on audio data alone, e.g. Wav2Vec2, HuBERT, XLSR-Wav2Vec2, have shown to require only very little annotated data to yield good performance on speech classification datasets.
Single-GPU
The following command shows how to fine-tune wav2vec2-base on the 🗣️ Keyword Spotting subset of the SUPERB dataset.
python run_audio_classification.py \
--model_name_or_path facebook/wav2vec2-base \
--dataset_name superb \
--dataset_config_name ks \
--output_dir wav2vec2-base-ft-keyword-spotting \
--overwrite_output_dir \
--remove_unused_columns False \
--do_train \
--do_eval \
--fp16 \
--learning_rate 3e-5 \
--max_length_seconds 1 \
--attention_mask False \
--warmup_ratio 0.1 \
--num_train_epochs 5 \
--per_device_train_batch_size 32 \
--gradient_accumulation_steps 4 \
--per_device_eval_batch_size 32 \
--dataloader_num_workers 4 \
--logging_strategy steps \
--logging_steps 10 \
--evaluation_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \
--metric_for_best_model accuracy \
--save_total_limit 3 \
--seed 0 \
--push_to_hub
On a single V100 GPU (16GB), this script should run in ~14 minutes and yield accuracy of 98.26%.
👀 See the results here: anton-l/wav2vec2-base-ft-keyword-spotting
If your model classification head dimensions do not fit the number of labels in the dataset, you can specify
--ignore_mismatched_sizes
to adapt it.
Multi-GPU
The following command shows how to fine-tune wav2vec2-base for 🌎 Language Identification on the CommonLanguage dataset.
python run_audio_classification.py \
--model_name_or_path facebook/wav2vec2-base \
--dataset_name common_language \
--audio_column_name audio \
--label_column_name language \
--output_dir wav2vec2-base-lang-id \
--overwrite_output_dir \
--remove_unused_columns False \
--do_train \
--do_eval \
--fp16 \
--learning_rate 3e-4 \
--max_length_seconds 16 \
--attention_mask False \
--warmup_ratio 0.1 \
--num_train_epochs 10 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 4 \
--per_device_eval_batch_size 1 \
--dataloader_num_workers 8 \
--logging_strategy steps \
--logging_steps 10 \
--evaluation_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \
--metric_for_best_model accuracy \
--save_total_limit 3 \
--seed 0 \
--push_to_hub
On 4 V100 GPUs (16GB), this script should run in ~1 hour and yield accuracy of 79.45%.
👀 See the results here: anton-l/wav2vec2-base-lang-id
Sharing your model on 🤗 Hub
-
If you haven't already, sign up for a 🤗 account
-
Make sure you have
git-lfs
installed and git set up.
$ apt install git-lfs
- Log in with your HuggingFace account credentials using
huggingface-cli
$ huggingface-cli login
# ...follow the prompts
- When running the script, pass the following arguments:
python run_audio_classification.py \
--push_to_hub \
--hub_model_id <username/model_id> \
...
Examples
The following table shows a couple of demonstration fine-tuning runs. It has been verified that the script works for the following datasets:
Dataset | Pretrained Model | # transformer layers | Accuracy on eval | GPU setup | Training time | Fine-tuned Model & Logs |
---|---|---|---|---|---|---|
Keyword Spotting | ntu-spml/distilhubert | 2 | 0.9706 | 1 V100 GPU | 11min | here |
Keyword Spotting | facebook/wav2vec2-base | 12 | 0.9826 | 1 V100 GPU | 14min | here |
Keyword Spotting | facebook/hubert-base-ls960 | 12 | 0.9819 | 1 V100 GPU | 14min | here |
Keyword Spotting | asapp/sew-mid-100k | 24 | 0.9757 | 1 V100 GPU | 15min | here |
Common Language | facebook/wav2vec2-base | 12 | 0.7945 | 4 V100 GPUs | 1h10m | here |