transformers/docs/source/en/model_doc/cvt.md

4.7 KiB

Convolutional Vision Transformer (CvT)

Overview

The CvT model was proposed in CvT: Introducing Convolutions to Vision Transformers by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan and Lei Zhang. The Convolutional vision Transformer (CvT) improves the Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.

The abstract from the paper is the following:

We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.

This model was contributed by anugunj. The original code can be found here.

Usage tips

  • CvT models are regular Vision Transformers, but trained with convolutions. They outperform the original model (ViT) when fine-tuned on ImageNet-1K and CIFAR-100.
  • You can check out demo notebooks regarding inference as well as fine-tuning on custom data here (you can just replace [ViTFeatureExtractor] by [AutoImageProcessor] and [ViTForImageClassification] by [CvtForImageClassification]).
  • The available checkpoints are either (1) pre-trained on ImageNet-22k (a collection of 14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on ImageNet-1k (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes).

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CvT.

If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

CvtConfig

autodoc CvtConfig

CvtModel

autodoc CvtModel - forward

CvtForImageClassification

autodoc CvtForImageClassification - forward

TFCvtModel

autodoc TFCvtModel - call

TFCvtForImageClassification

autodoc TFCvtForImageClassification - call