4.0 KiB
Agents & Tools
Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change.
To learn more about agents and tools make sure to read the introductory guide. This page contains the API docs for the underlying classes.
Agents
We provide two types of agents, based on the main [Agent
] class:
- [
CodeAgent
] acts in one shot, generating code to solve the task, then executes it at once. - [
ReactAgent
] acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:- [
ReactJsonAgent
] writes its tool calls in JSON. - [
ReactCodeAgent
] writes its tool calls in Python code.
- [
Agent
autodoc Agent
CodeAgent
autodoc CodeAgent
React agents
autodoc ReactAgent
autodoc ReactJsonAgent
autodoc ReactCodeAgent
Tools
load_tool
autodoc load_tool
Tool
autodoc Tool
Toolbox
autodoc Toolbox
PipelineTool
autodoc PipelineTool
launch_gradio_demo
autodoc launch_gradio_demo
ToolCollection
autodoc ToolCollection
Engines
You're free to create and use your own engines to be usable by the Agents framework. These engines have the following specification:
- Follow the messages format for its input (
List[Dict[str, str]]
) and return a string. - Stop generating outputs before the sequences passed in the argument
stop_sequences
HfEngine
For convenience, we have added a HfEngine
that implements the points above and uses an inference endpoint for the execution of the LLM.
>>> from transformers import HfEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
autodoc HfEngine
Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
object should still behave as a PIL.Image
.
These types have three specific purposes:
- Calling
to_raw
on the type should return the underlying object - Calling
to_string
on the type should return the object as a string: that can be the string in case of anAgentText
but will be the path of the serialized version of the object in other instances - Displaying it in an ipython kernel should display the object correctly
AgentText
autodoc transformers.agents.agent_types.AgentText
AgentImage
autodoc transformers.agents.agent_types.AgentImage
AgentAudio
autodoc transformers.agents.agent_types.AgentAudio