126 lines
4.8 KiB
Markdown
126 lines
4.8 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# Callbacks
|
||
|
||
|
||
Callbacks可以用来自定义PyTorch [Trainer]中训练循环行为的对象(此功能尚未在TensorFlow中实现),该对象可以检查训练循环状态(用于进度报告、在TensorBoard或其他ML平台上记录日志等),并做出决策(例如提前停止)。
|
||
|
||
Callbacks是“只读”的代码片段,除了它们返回的[TrainerControl]对象外,它们不能更改训练循环中的任何内容。对于需要更改训练循环的自定义,您应该继承[Trainer]并重载您需要的方法(有关示例,请参见[trainer](trainer))。
|
||
|
||
默认情况下,`TrainingArguments.report_to` 设置为"all",然后[Trainer]将使用以下callbacks。
|
||
|
||
|
||
- [`DefaultFlowCallback`],它处理默认的日志记录、保存和评估行为
|
||
- [`PrinterCallback`] 或 [`ProgressCallback`],用于显示进度和打印日志(如果通过[`TrainingArguments`]停用tqdm,则使用第一个函数;否则使用第二个)。
|
||
- [`~integrations.TensorBoardCallback`],如果TensorBoard可访问(通过PyTorch版本 >= 1.4 或者 tensorboardX)。
|
||
- [`~integrations.WandbCallback`],如果安装了[wandb](https://www.wandb.com/)。
|
||
- [`~integrations.CometCallback`],如果安装了[comet_ml](https://www.comet.ml/site/)。
|
||
- [`~integrations.MLflowCallback`],如果安装了[mlflow](https://www.mlflow.org/)。
|
||
- [`~integrations.NeptuneCallback`],如果安装了[neptune](https://neptune.ai/)。
|
||
- [`~integrations.AzureMLCallback`],如果安装了[azureml-sdk](https://pypi.org/project/azureml-sdk/)。
|
||
- [`~integrations.CodeCarbonCallback`],如果安装了[codecarbon](https://pypi.org/project/codecarbon/)。
|
||
- [`~integrations.ClearMLCallback`],如果安装了[clearml](https://github.com/allegroai/clearml)。
|
||
- [`~integrations.DagsHubCallback`],如果安装了[dagshub](https://dagshub.com/)。
|
||
- [`~integrations.FlyteCallback`],如果安装了[flyte](https://flyte.org/)。
|
||
- [`~integrations.DVCLiveCallback`],如果安装了[dvclive](https://dvc.org/doc/dvclive)。
|
||
|
||
如果安装了一个软件包,但您不希望使用相关的集成,您可以将 `TrainingArguments.report_to` 更改为仅包含您想要使用的集成的列表(例如 `["azure_ml", "wandb"]`)。
|
||
|
||
实现callbacks的主要类是[`TrainerCallback`]。它获取用于实例化[`Trainer`]的[`TrainingArguments`],可以通过[`TrainerState`]访问该Trainer的内部状态,并可以通过[`TrainerControl`]对训练循环执行一些操作。
|
||
|
||
|
||
## 可用的Callbacks
|
||
|
||
这里是库里可用[`TrainerCallback`]的列表:
|
||
|
||
[[autodoc]] integrations.CometCallback
|
||
- setup
|
||
|
||
[[autodoc]] DefaultFlowCallback
|
||
|
||
[[autodoc]] PrinterCallback
|
||
|
||
[[autodoc]] ProgressCallback
|
||
|
||
[[autodoc]] EarlyStoppingCallback
|
||
|
||
[[autodoc]] integrations.TensorBoardCallback
|
||
|
||
[[autodoc]] integrations.WandbCallback
|
||
- setup
|
||
|
||
[[autodoc]] integrations.MLflowCallback
|
||
- setup
|
||
|
||
[[autodoc]] integrations.AzureMLCallback
|
||
|
||
[[autodoc]] integrations.CodeCarbonCallback
|
||
|
||
[[autodoc]] integrations.NeptuneCallback
|
||
|
||
[[autodoc]] integrations.ClearMLCallback
|
||
|
||
[[autodoc]] integrations.DagsHubCallback
|
||
|
||
[[autodoc]] integrations.FlyteCallback
|
||
|
||
[[autodoc]] integrations.DVCLiveCallback
|
||
- setup
|
||
|
||
## TrainerCallback
|
||
|
||
[[autodoc]] TrainerCallback
|
||
|
||
以下是如何使用PyTorch注册自定义callback的示例:
|
||
|
||
[`Trainer`]:
|
||
|
||
```python
|
||
class MyCallback(TrainerCallback):
|
||
"A callback that prints a message at the beginning of training"
|
||
|
||
def on_train_begin(self, args, state, control, **kwargs):
|
||
print("Starting training")
|
||
|
||
|
||
trainer = Trainer(
|
||
model,
|
||
args,
|
||
train_dataset=train_dataset,
|
||
eval_dataset=eval_dataset,
|
||
callbacks=[MyCallback], # We can either pass the callback class this way or an instance of it (MyCallback())
|
||
)
|
||
```
|
||
|
||
注册callback的另一种方式是调用 `trainer.add_callback()`,如下所示:
|
||
|
||
|
||
```python
|
||
trainer = Trainer(...)
|
||
trainer.add_callback(MyCallback)
|
||
# Alternatively, we can pass an instance of the callback class
|
||
trainer.add_callback(MyCallback())
|
||
```
|
||
|
||
## TrainerState
|
||
|
||
[[autodoc]] TrainerState
|
||
|
||
## TrainerControl
|
||
|
||
[[autodoc]] TrainerControl
|