2.5 KiB
SEW
Overview
SEW (Squeezed and Efficient Wav2Vec) was proposed in Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
The abstract from the paper is the following:
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
This model was contributed by anton-l.
Usage tips
- SEW is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- SEWForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
[
Wav2Vec2CTCTokenizer
].
Resources
SEWConfig
autodoc SEWConfig
SEWModel
autodoc SEWModel - forward
SEWForCTC
autodoc SEWForCTC - forward
SEWForSequenceClassification
autodoc SEWForSequenceClassification - forward