transformers/docs/source/ko/tasks/asr.md

16 KiB

자동 음성 인식automatic-speech-recognition

open-in-colab

자동 음성 인식(Automatic Speech Recognition, ASR)은 음성 신호를 텍스트로 변환하여 음성 입력 시퀀스를 텍스트 출력에 매핑합니다. Siri와 Alexa와 같은 가상 어시스턴트는 ASR 모델을 사용하여 일상적으로 사용자를 돕고 있으며, 회의 중 라이브 캡션 및 메모 작성과 같은 유용한 사용자 친화적 응용 프로그램도 많이 있습니다.

이 가이드에서 소개할 내용은 아래와 같습니다:

  1. MInDS-14 데이터 세트에서 Wav2Vec2를 미세 조정하여 오디오를 텍스트로 변환합니다.
  2. 미세 조정한 모델을 추론에 사용합니다.

이 작업과 호환되는 모든 아키텍처와 체크포인트를 보려면 작업 페이지를 확인하는 것이 좋습니다.

시작하기 전에 필요한 모든 라이브러리가 설치되어 있는지 확인하세요:

pip install transformers datasets evaluate jiwer

Hugging Face 계정에 로그인하면 모델을 업로드하고 커뮤니티에 공유할 수 있습니다. 토큰을 입력하여 로그인하세요.

>>> from huggingface_hub import notebook_login

>>> notebook_login()

MInDS-14 데이터 세트 가져오기load-minds-14-dataset

먼저, 🤗 Datasets 라이브러리에서 MInDS-14 데이터 세트의 일부분을 가져오세요. 이렇게 하면 전체 데이터 세트에 대한 훈련에 시간을 들이기 전에 모든 것이 작동하는지 실험하고 검증할 수 있습니다.

>>> from datasets import load_dataset, Audio

>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train[:100]")

[~Dataset.train_test_split] 메소드를 사용하여 데이터 세트의 train을 훈련 세트와 테스트 세트로 나누세요:

>>> minds = minds.train_test_split(test_size=0.2)

그리고 데이터 세트를 확인하세요:

>>> minds
DatasetDict({
    train: Dataset({
        features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
        num_rows: 16
    })
    test: Dataset({
        features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
        num_rows: 4
    })
})

데이터 세트에는 lang_idenglish_transcription과 같은 유용한 정보가 많이 포함되어 있지만, 이 가이드에서는 audiotranscription에 초점을 맞출 것입니다. 다른 열은 [~datasets.Dataset.remove_columns] 메소드를 사용하여 제거하세요:

>>> minds = minds.remove_columns(["english_transcription", "intent_class", "lang_id"])

예시를 다시 한번 확인해보세요:

>>> minds["train"][0]
{'audio': {'array': array([-0.00024414,  0.        ,  0.        , ...,  0.00024414,
          0.00024414,  0.00024414], dtype=float32),
  'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
  'sampling_rate': 8000},
 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"}

두 개의 필드가 있습니다:

  • audio: 오디오 파일을 가져오고 리샘플링하기 위해 호출해야 하는 음성 신호의 1차원 array(배열)
  • transcription: 목표 텍스트

전처리preprocess

다음으로 오디오 신호를 처리하기 위한 Wav2Vec2 프로세서를 가져옵니다:

>>> from transformers import AutoProcessor

>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base")

MInDS-14 데이터 세트의 샘플링 레이트는 8000kHz이므로(데이터 세트 카드에서 확인), 사전 훈련된 Wav2Vec2 모델을 사용하려면 데이터 세트를 16000kHz로 리샘플링해야 합니다:

>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([-2.38064706e-04, -1.58618059e-04, -5.43987835e-06, ...,
          2.78103951e-04,  2.38446111e-04,  1.18740834e-04], dtype=float32),
  'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
  'sampling_rate': 16000},
 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"}

위의 'transcription'에서 볼 수 있듯이 텍스트는 대문자와 소문자가 섞여 있습니다. Wav2Vec2 토크나이저는 대문자 문자에 대해서만 훈련되어 있으므로 텍스트가 토크나이저의 어휘와 일치하는지 확인해야 합니다:

>>> def uppercase(example):
...     return {"transcription": example["transcription"].upper()}


>>> minds = minds.map(uppercase)

이제 다음 작업을 수행할 전처리 함수를 만들어보겠습니다:

  1. audio 열을 호출하여 오디오 파일을 가져오고 리샘플링합니다.
  2. 오디오 파일에서 input_values를 추출하고 프로세서로 transcription 열을 토큰화합니다.
>>> def prepare_dataset(batch):
...     audio = batch["audio"]
...     batch = processor(audio["array"], sampling_rate=audio["sampling_rate"], text=batch["transcription"])
...     batch["input_length"] = len(batch["input_values"][0])
...     return batch

전체 데이터 세트에 전처리 함수를 적용하려면 🤗 Datasets [~datasets.Dataset.map] 함수를 사용하세요. num_proc 매개변수를 사용하여 프로세스 수를 늘리면 map의 속도를 높일 수 있습니다. [~datasets.Dataset.remove_columns] 메소드를 사용하여 필요하지 않은 열을 제거하세요:

>>> encoded_minds = minds.map(prepare_dataset, remove_columns=minds.column_names["train"], num_proc=4)

🤗 Transformers에는 자동 음성 인식용 데이터 콜레이터가 없으므로 예제 배치를 생성하려면 [DataCollatorWithPadding]을 조정해야 합니다. 이렇게 하면 데이터 콜레이터는 텍스트와 레이블을 배치에서 가장 긴 요소의 길이에 동적으로 패딩하여 길이를 균일하게 합니다. tokenizer 함수에서 padding=True를 설정하여 텍스트를 패딩할 수 있지만, 동적 패딩이 더 효율적입니다.

다른 데이터 콜레이터와 달리 이 특정 데이터 콜레이터는 input_valueslabels에 대해 다른 패딩 방법을 적용해야 합니다.

>>> import torch

>>> from dataclasses import dataclass, field
>>> from typing import Any, Dict, List, Optional, Union


>>> @dataclass
... class DataCollatorCTCWithPadding:
...     processor: AutoProcessor
...     padding: Union[bool, str] = "longest"

...     def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
...         # 입력과 레이블을 분할합니다
...         # 길이가 다르고, 각각 다른 패딩 방법을 사용해야 하기 때문입니다
...         input_features = [{"input_values": feature["input_values"][0]} for feature in features]
...         label_features = [{"input_ids": feature["labels"]} for feature in features]

...         batch = self.processor.pad(input_features, padding=self.padding, return_tensors="pt")

...         labels_batch = self.processor.pad(labels=label_features, padding=self.padding, return_tensors="pt")

...         # 패딩에 대해 손실을 적용하지 않도록 -100으로 대체합니다
...         labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

...         batch["labels"] = labels

...         return batch

이제 DataCollatorForCTCWithPadding을 인스턴스화합니다:

>>> data_collator = DataCollatorCTCWithPadding(processor=processor, padding="longest")

평가하기evaluate

훈련 중에 평가 지표를 포함하면 모델의 성능을 평가하는 데 도움이 되는 경우가 많습니다. 🤗 Evaluate 라이브러리를 사용하면 평가 방법을 빠르게 불러올 수 있습니다. 이 작업에서는 단어 오류율(Word Error Rate, WER) 평가 지표를 가져옵니다. (평가 지표를 불러오고 계산하는 방법은 🤗 Evaluate 둘러보기를 참조하세요):

>>> import evaluate

>>> wer = evaluate.load("wer")

그런 다음 예측값과 레이블을 [~evaluate.EvaluationModule.compute]에 전달하여 WER을 계산하는 함수를 만듭니다:

>>> import numpy as np


>>> def compute_metrics(pred):
...     pred_logits = pred.predictions
...     pred_ids = np.argmax(pred_logits, axis=-1)

...     pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id

...     pred_str = processor.batch_decode(pred_ids)
...     label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

...     wer = wer.compute(predictions=pred_str, references=label_str)

...     return {"wer": wer}

이제 compute_metrics 함수를 사용할 준비가 되었으며, 훈련을 설정할 때 이 함수로 되돌아올 것입니다.

훈련하기train

[Trainer]로 모델을 미세 조정하는 것이 익숙하지 않다면, 여기에서 기본 튜토리얼을 확인해보세요!

이제 모델 훈련을 시작할 준비가 되었습니다! [AutoModelForCTC]로 Wav2Vec2를 가져오세요. ctc_loss_reduction 매개변수로 CTC 손실에 적용할 축소(reduction) 방법을 지정하세요. 기본값인 합계 대신 평균을 사용하는 것이 더 좋은 경우가 많습니다:

>>> from transformers import AutoModelForCTC, TrainingArguments, Trainer

>>> model = AutoModelForCTC.from_pretrained(
...     "facebook/wav2vec2-base",
...     ctc_loss_reduction="mean",
...     pad_token_id=processor.tokenizer.pad_token_id,
... )

이제 세 단계만 남았습니다:

  1. [TrainingArguments]에서 훈련 하이퍼파라미터를 정의하세요. output_dir은 모델을 저장할 경로를 지정하는 유일한 필수 매개변수입니다. push_to_hub=True를 설정하여 모델을 Hub에 업로드 할 수 있습니다(모델을 업로드하려면 Hugging Face에 로그인해야 합니다). [Trainer]는 각 에폭마다 WER을 평가하고 훈련 체크포인트를 저장합니다.
  2. 모델, 데이터 세트, 토크나이저, 데이터 콜레이터, compute_metrics 함수와 함께 [Trainer]에 훈련 인수를 전달하세요.
  3. [~Trainer.train]을 호출하여 모델을 미세 조정하세요.
>>> training_args = TrainingArguments(
...     output_dir="my_awesome_asr_mind_model",
...     per_device_train_batch_size=8,
...     gradient_accumulation_steps=2,
...     learning_rate=1e-5,
...     warmup_steps=500,
...     max_steps=2000,
...     gradient_checkpointing=True,
...     fp16=True,
...     group_by_length=True,
...     eval_strategy="steps",
...     per_device_eval_batch_size=8,
...     save_steps=1000,
...     eval_steps=1000,
...     logging_steps=25,
...     load_best_model_at_end=True,
...     metric_for_best_model="wer",
...     greater_is_better=False,
...     push_to_hub=True,
... )

>>> trainer = Trainer(
...     model=model,
...     args=training_args,
...     train_dataset=encoded_minds["train"],
...     eval_dataset=encoded_minds["test"],
...     tokenizer=processor.feature_extractor,
...     data_collator=data_collator,
...     compute_metrics=compute_metrics,
... )

>>> trainer.train()

훈련이 완료되면 모두가 모델을 사용할 수 있도록 [~transformers.Trainer.push_to_hub] 메소드를 사용하여 모델을 Hub에 공유하세요:

>>> trainer.push_to_hub()

자동 음성 인식을 위해 모델을 미세 조정하는 더 자세한 예제는 영어 자동 음성 인식을 위한 블로그 포스트와 다국어 자동 음성 인식을 위한 포스트를 참조하세요.

추론하기inference

좋아요, 이제 모델을 미세 조정했으니 추론에 사용할 수 있습니다!

추론에 사용할 오디오 파일을 가져오세요. 필요한 경우 오디오 파일의 샘플링 비율을 모델의 샘플링 레이트에 맞게 리샘플링하는 것을 잊지 마세요!

>>> from datasets import load_dataset, Audio

>>> dataset = load_dataset("PolyAI/minds14", "en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> audio_file = dataset[0]["audio"]["path"]

추론을 위해 미세 조정된 모델을 시험해보는 가장 간단한 방법은 [pipeline]을 사용하는 것입니다. 모델을 사용하여 자동 음성 인식을 위한 pipeline을 인스턴스화하고 오디오 파일을 전달하세요:

>>> from transformers import pipeline

>>> transcriber = pipeline("automatic-speech-recognition", model="stevhliu/my_awesome_asr_minds_model")
>>> transcriber(audio_file)
{'text': 'I WOUD LIKE O SET UP JOINT ACOUNT WTH Y PARTNER'}

텍스트로 변환된 결과가 꽤 괜찮지만 더 좋을 수도 있습니다! 더 나은 결과를 얻으려면 더 많은 예제로 모델을 미세 조정하세요!

pipeline의 결과를 수동으로 재현할 수도 있습니다:

오디오 파일과 텍스트를 전처리하고 PyTorch 텐서로 `input`을 반환할 프로세서를 가져오세요:
>>> from transformers import AutoProcessor

>>> processor = AutoProcessor.from_pretrained("stevhliu/my_awesome_asr_mind_model")
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")

입력을 모델에 전달하고 로짓을 반환하세요:

>>> from transformers import AutoModelForCTC

>>> model = AutoModelForCTC.from_pretrained("stevhliu/my_awesome_asr_mind_model")
>>> with torch.no_grad():
...     logits = model(**inputs).logits

가장 높은 확률의 input_ids를 예측하고, 프로세서를 사용하여 예측된 input_ids를 다시 텍스트로 디코딩하세요:

>>> import torch

>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription
['I WOUL LIKE O SET UP JOINT ACOUNT WTH Y PARTNER']