68 lines
4.1 KiB
Markdown
68 lines
4.1 KiB
Markdown
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# Efficient Training on CPU
|
||
|
||
このガイドは、CPU上で大規模なモデルを効率的にトレーニングする方法に焦点を当てています。
|
||
|
||
## Mixed precision with IPEX
|
||
|
||
IPEXはAVX-512以上のCPUに最適化されており、AVX2のみのCPUでも機能的に動作します。そのため、AVX-512以上のIntel CPU世代ではパフォーマンスの向上が期待されますが、AVX2のみのCPU(例:AMD CPUまたは古いIntel CPU)ではIPEXの下でより良いパフォーマンスが得られるかもしれませんが、保証されません。IPEXは、Float32とBFloat16の両方でCPUトレーニングのパフォーマンスを最適化します。以下のセクションでは、BFloat16の使用に重点を置いて説明します。
|
||
|
||
低精度データ型であるBFloat16は、AVX512命令セットを備えた第3世代Xeon® Scalable Processors(別名Cooper Lake)でネイティブサポートされており、さらに高性能なIntel® Advanced Matrix Extensions(Intel® AMX)命令セットを備えた次世代のIntel® Xeon® Scalable Processorsでもサポートされます。CPUバックエンド用の自動混合精度がPyTorch-1.10以降で有効になっています。同時に、Intel® Extension for PyTorchでのCPU用BFloat16の自動混合精度サポートと、オペレーターのBFloat16最適化のサポートが大幅に向上し、一部がPyTorchのメインブランチにアップストリームされています。ユーザーはIPEX Auto Mixed Precisionを使用することで、より優れたパフォーマンスとユーザーエクスペリエンスを得ることができます。
|
||
|
||
詳細な情報については、[Auto Mixed Precision](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/amp.html)を確認してください。
|
||
|
||
### IPEX installation:
|
||
|
||
IPEXのリリースはPyTorchに従っており、pipを使用してインストールできます:
|
||
|
||
| PyTorch Version | IPEX version |
|
||
| :---------------: | :----------: |
|
||
| 1.13 | 1.13.0+cpu |
|
||
| 1.12 | 1.12.300+cpu |
|
||
| 1.11 | 1.11.200+cpu |
|
||
| 1.10 | 1.10.100+cpu |
|
||
|
||
```bash
|
||
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
|
||
```
|
||
|
||
[IPEXのインストール方法](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html)について、さらなるアプローチを確認してください。
|
||
|
||
### Trainerでの使用方法
|
||
TrainerでIPEXの自動混合精度を有効にするには、ユーザーはトレーニングコマンド引数に `use_ipex`、`bf16`、および `no_cuda` を追加する必要があります。
|
||
|
||
[Transformersの質問応答](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)のユースケースを例に説明します。
|
||
|
||
- CPU上でBF16自動混合精度を使用してIPEXでトレーニングを行う場合:
|
||
<pre> python run_qa.py \
|
||
--model_name_or_path google-bert/bert-base-uncased \
|
||
--dataset_name squad \
|
||
--do_train \
|
||
--do_eval \
|
||
--per_device_train_batch_size 12 \
|
||
--learning_rate 3e-5 \
|
||
--num_train_epochs 2 \
|
||
--max_seq_length 384 \
|
||
--doc_stride 128 \
|
||
--output_dir /tmp/debug_squad/ \
|
||
<b>--use_ipex \</b>
|
||
<b>--bf16 --no_cuda</b></pre>
|
||
|
||
### Practice example
|
||
|
||
Blog: [Accelerating PyTorch Transformers with Intel Sapphire Rapids](https://huggingface.co/blog/intel-sapphire-rapids)
|