7.5 KiB
Data2Vec
Overview
Data2Vec モデルは、data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language で Alexei Baevski、Wei-Ning Hsu、Qiantong Xu、バArun Babu, Jiatao Gu and Michael Auli. Data2Vec は、テキスト、音声、画像などのさまざまなデータ モダリティにわたる自己教師あり学習のための統一フレームワークを提案します。 重要なのは、事前トレーニングの予測ターゲットは、モダリティ固有のコンテキストに依存しないターゲットではなく、入力のコンテキスト化された潜在表現であることです。
論文の要約は次のとおりです。
自己教師あり学習の一般的な考え方はどのモダリティでも同じですが、実際のアルゴリズムと 単一のモダリティを念頭に置いて開発されたため、目的は大きく異なります。一般に近づけるために 自己教師あり学習では、どちらの音声に対しても同じ学習方法を使用するフレームワークである data2vec を紹介します。 NLP またはコンピューター ビジョン。中心となるアイデアは、完全な入力データの潜在的な表現を、 標準の Transformer アーキテクチャを使用した自己蒸留セットアップの入力のマスクされたビュー。 単語、視覚的トークン、人間の音声単位などのモダリティ固有のターゲットを予測するのではなく、 本質的にローカルであるため、data2vec は、からの情報を含む文脈化された潜在表現を予測します。 入力全体。音声認識、画像分類、および 自然言語理解は、新しい最先端技術や、主流のアプローチに匹敵するパフォーマンスを実証します。 モデルとコードは、www.github.com/pytorch/fairseq/tree/master/examples/data2vec. で入手できます。
このモデルは、edugp および patrickvonplaten によって提供されました。 sayakpaul と Rocketknight1 は、TensorFlow のビジョンに Data2Vec を提供しました。
元のコード (NLP および音声用) は、こちら にあります。 ビジョンの元のコードは こちら にあります。
Usage tips
- Data2VecAudio、Data2VecText、および Data2VecVision はすべて、同じ自己教師あり学習方法を使用してトレーニングされています。
- Data2VecAudio の場合、前処理は特徴抽出を含めて [
Wav2Vec2Model
] と同じです。 - Data2VecText の場合、前処理はトークン化を含めて [
RobertaModel
] と同じです。 - Data2VecVision の場合、前処理は特徴抽出を含めて [
BeitModel
] と同じです。
Resources
Data2Vec の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。
- [
Data2VecVisionForImageClassification
] は、この サンプル スクリプト および ノートブック。 - カスタム データセットで [
TFData2VecVisionForImageClassification
] を微調整するには、このノートブック を参照してください。 )。
Data2VecText ドキュメント リソース
Data2VecAudio ドキュメント リソース
Data2VecVision ドキュメント リソース
ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
Data2VecTextConfig
autodoc Data2VecTextConfig
Data2VecAudioConfig
autodoc Data2VecAudioConfig
Data2VecVisionConfig
autodoc Data2VecVisionConfig
Data2VecAudioModel
autodoc Data2VecAudioModel - forward
Data2VecAudioForAudioFrameClassification
autodoc Data2VecAudioForAudioFrameClassification - forward
Data2VecAudioForCTC
autodoc Data2VecAudioForCTC - forward
Data2VecAudioForSequenceClassification
autodoc Data2VecAudioForSequenceClassification - forward
Data2VecAudioForXVector
autodoc Data2VecAudioForXVector - forward
Data2VecTextModel
autodoc Data2VecTextModel - forward
Data2VecTextForCausalLM
autodoc Data2VecTextForCausalLM - forward
Data2VecTextForMaskedLM
autodoc Data2VecTextForMaskedLM - forward
Data2VecTextForSequenceClassification
autodoc Data2VecTextForSequenceClassification - forward
Data2VecTextForMultipleChoice
autodoc Data2VecTextForMultipleChoice - forward
Data2VecTextForTokenClassification
autodoc Data2VecTextForTokenClassification - forward
Data2VecTextForQuestionAnswering
autodoc Data2VecTextForQuestionAnswering - forward
Data2VecVisionModel
autodoc Data2VecVisionModel - forward
Data2VecVisionForImageClassification
autodoc Data2VecVisionForImageClassification - forward
Data2VecVisionForSemanticSegmentation
autodoc Data2VecVisionForSemanticSegmentation - forward
TFData2VecVisionModel
autodoc TFData2VecVisionModel - call
TFData2VecVisionForImageClassification
autodoc TFData2VecVisionForImageClassification - call
TFData2VecVisionForSemanticSegmentation
autodoc TFData2VecVisionForSemanticSegmentation - call