transformers/docs/source/ja/model_doc/convbert.md

5.3 KiB

ConvBERT

Overview

ConvBERT モデルは、ConvBERT: Improving BERT with Span-based Dynamic Convolution で Zihang Jiang、Weihao Yu、Daquan Zhou、Yunpeng Chen、Jiashi Feng、Shuicheng Yan によって提案されました。 やん。

論文の要約は次のとおりです。

BERT やそのバリアントなどの事前トレーニング済み言語モデルは、最近、さまざまな環境で目覚ましいパフォーマンスを達成しています。 自然言語理解タスク。ただし、BERT はグローバルな自己注意ブロックに大きく依存しているため、問題が発生します。 メモリ使用量と計算コストが大きくなります。すべての注意が入力シーケンス全体に対してクエリを実行しますが、 グローバルな観点からアテンション マップを生成すると、一部のヘッドはローカルな依存関係のみを学習する必要があることがわかります。 これは、計算の冗長性が存在することを意味します。したがって、我々は、新しいスパンベースの動的畳み込みを提案します。 これらのセルフアテンション ヘッドを置き換えて、ローカルの依存関係を直接モデル化します。新しいコンボリューションヘッドと、 自己注意の頭を休め、グローバルとローカルの両方の状況でより効率的な新しい混合注意ブロックを形成します 学ぶ。この混合注意設計を BERT に装備し、ConvBERT モデルを構築します。実験でわかったことは、 ConvBERT は、トレーニング コストが低く、さまざまな下流タスクにおいて BERT およびその亜種よりも大幅に優れたパフォーマンスを発揮します。 モデルパラメータが少なくなります。注目すべきことに、ConvBERTbase モデルは 86.4 GLUE スコアを達成し、ELECTRAbase よりも 0.7 高いのに対し、 トレーニングコストは 1/4 未満です。コードと事前トレーニングされたモデルがリリースされます。

このモデルは、abhishek によって提供されました。オリジナルの実装が見つかります ここ: https://github.com/yitu-opensource/ConvBert

Usage tips

ConvBERT トレーニングのヒントは BERT のヒントと似ています。使用上のヒントについては、BERT ドキュメント を参照してください。

Resources

ConvBertConfig

autodoc ConvBertConfig

ConvBertTokenizer

autodoc ConvBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

ConvBertTokenizerFast

autodoc ConvBertTokenizerFast

ConvBertModel

autodoc ConvBertModel - forward

ConvBertForMaskedLM

autodoc ConvBertForMaskedLM - forward

ConvBertForSequenceClassification

autodoc ConvBertForSequenceClassification - forward

ConvBertForMultipleChoice

autodoc ConvBertForMultipleChoice - forward

ConvBertForTokenClassification

autodoc ConvBertForTokenClassification - forward

ConvBertForQuestionAnswering

autodoc ConvBertForQuestionAnswering - forward

TFConvBertModel

autodoc TFConvBertModel - call

TFConvBertForMaskedLM

autodoc TFConvBertForMaskedLM - call

TFConvBertForSequenceClassification

autodoc TFConvBertForSequenceClassification - call

TFConvBertForMultipleChoice

autodoc TFConvBertForMultipleChoice - call

TFConvBertForTokenClassification

autodoc TFConvBertForTokenClassification - call

TFConvBertForQuestionAnswering

autodoc TFConvBertForQuestionAnswering - call