5.5 KiB
Filosofía
🤗 Transformers es una biblioteca construida para:
- Los investigadores y educadores de NLP que busquen usar/estudiar/extender modelos transformers a gran escala
- Profesionales que quieren optimizar esos modelos y/o ponerlos en producción
- Ingenieros que solo quieren descargar un modelo preentrenado y usarlo para resolver una tarea NLP dada.
La biblioteca fue diseñada con dos fuertes objetivos en mente:
-
Que sea tan fácil y rápida de utilizar como sea posible:
- Hemos limitado enormemente el número de abstracciones que el usuario tiene que aprender. De hecho, no hay casi abstracciones, solo tres clases estándar necesarias para usar cada modelo: configuration, models y tokenizer.
- Todas estas clases pueden ser inicializadas de forma simple y unificada a partir de ejemplos pre-entrenados mediante el uso de un método
from_pretrained()
común de solicitud que se encargará de descargar (si es necesario), almacenar y cargar la solicitud de clase relacionada y datos asociados (configurations' hyper-parameters, tokenizers' vocabulary, and models' weights) a partir de un control pre-entrenado proporcionado en Hugging Face Hub o de tu propio control guardado. - Por encima de esas tres clases estándar, la biblioteca proporciona dos APIs: [
pipeline
] para usar rápidamente un modelo (junto a su configuracion y tokenizer asociados) sobre una tarea dada, y [Trainer
]/Keras.fit
para entrenar u optimizar de forma rápida un modelo dado. - Como consecuencia, esta biblioteca NO es una caja de herramientas modular de bloques individuales para redes neuronales. Si quieres extender/construir sobre la biblioteca, usa simplemente los módulos regulares de Python/PyTorch/TensorFlow/Keras y emplea las clases estándar de la biblioteca como punto de partida para reutilizar funcionalidades tales como abrir/guardar modelo.
-
Proporciona modelos modernos con rendimientos lo más parecido posible a los modelos originales:
- Proporcionamos al menos un ejemplo para cada arquitectura que reproduce un resultado proporcionado por los autores de dicha arquitectura.
- El código normalmente es parecido al código base original, lo cual significa que algún código Pytorch puede no ser tan pytorchic como podría ser por haber sido convertido a código TensorFlow, y viceversa.
Unos cuantos objetivos adicionales:
-
Exponer las características internas de los modelos de la forma más coherente posible:
- Damos acceso, mediante una sola API, a todos los estados ocultos y pesos de atención.
- Tokenizer y el modelo de API base están estandarizados para cambiar fácilmente entre modelos.
-
Incorporar una selección subjetiva de herramientas de gran potencial para la optimización/investigación de estos modelos:
- Una forma sencilla/coherente de añadir nuevos tokens al vocabulario e incrustraciones (embeddings, en inglés) para optimización.
- Formas sencillas de camuflar y reducir "transformer heads".
-
Cambiar fácilmente entre PyTorch y TensorFlow 2.0, permitiendo el entrenamiento usando un marco y la inferencia usando otro.
Conceptos principales
La biblioteca está construida alrededor de tres tipos de clases para cada modelo:
- Model classes como [
BertModel
], que consisten en más de 30 modelos PyTorch (torch.nn.Module) o modelos Keras (tf.keras.Model) que funcionan con pesos pre-entrenados proporcionados en la biblioteca. - Configuration classes como [
BertConfig
], que almacena todos los parámetros necesarios para construir un modelo. No siempre tienes que generarla tu. En particular, si estas usando un modelo pre-entrenado sin ninguna modificación, la creación del modelo se encargará automáticamente de generar la configuración (que es parte del modelo). - Tokenizer classes como [
BertTokenizer
], que almacena el vocabulario para cada modelo y proporciona métodos para codificar/decodificar strings en una lista de índices de "token embeddings" para ser empleados en un modelo.
Todas estas clases pueden ser generadas a partir de ejemplos pre-entrenados, y guardados localmente usando dos métodos:
from_pretrained()
permite generar un modelo/configuración/tokenizer a partir de una versión pre-entrenada proporcionada ya sea por la propia biblioteca (los modelos compatibles se pueden encontrar en Model Hub) o guardados localmente (o en un servidor) por el usuario.save_pretrained()
permite guardar un modelo/configuración/tokenizer localmente, de forma que puede ser empleado de nuevo usandofrom_pretrained()
.