70 lines
27 KiB
Markdown
70 lines
27 KiB
Markdown
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
-->
|
|
|
|
# Comunidad
|
|
|
|
Esta página agrupa los recursos de 🤗 Transformers desarrollados por la comunidad.
|
|
|
|
## Los recursos de la comunidad:
|
|
|
|
| Recurso | Descripción | Autor |
|
|
|:----------|:-------------|------:|
|
|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | Un conjunto de flashcards basadas en el [Glosario de documentos de Transformers] (glosario) que se ha puesto en un formato que se puede aprender/revisar fácilmente usando [Anki](https://apps.ankiweb.net/) una fuente abierta, aplicación de multiplataforma diseñada específicamente para la retención de conocimientos a largo plazo. Ve este [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
|
|
|
|
## Los cuadernos de la comunidad:
|
|
|
|
| Cuaderno | Descripción | Autor | |
|
|
|:----------|:-------------|:-------------|------:|
|
|
| [Ajustar un transformador preentrenado para generar letras](https://github.com/AlekseyKorshuk/huggingartists) | Cómo generar letras al estilo de tu artista favorito ajustando un modelo GPT-2 | [Aleksey Korshuk](https://github.com/AlekseyKorshuk) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb) |
|
|
| [Entrenar T5 en Tensorflow 2](https://github.com/snapthat/TF-T5-text-to-text) | Cómo entrenar a T5 para cualquier tarea usando Tensorflow 2. Este cuaderno demuestra una tarea de preguntas y respuestas implementada en Tensorflow 2 usando SQUAD | [Muhammad Harris](https://github.com/HarrisDePerceptron) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb) |
|
|
| [Entrenar T5 en TPU](https://github.com/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) | Cómo entrenar a T5 en SQUAD con Transformers y Nlp | [Suraj Patil](https://github.com/patil-suraj) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) |
|
|
| [Ajustar T5 para Clasificación y Opción Múltiple](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | Cómo ajustar T5 para clasificación y tareas de opción múltiple usando un formato de texto a texto con PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) |
|
|
| [Ajustar DialoGPT en nuevos conjuntos de datos e idiomas](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | Cómo ajustar el modelo DialoGPT en un nuevo conjunto de datos para chatbots conversacionales de diálogo abierto | [Nathan Cooper](https://github.com/ncoop57) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) |
|
|
| [Modelado de secuencias largas con Reformer](https://github.com/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | Cómo entrenar en secuencias de hasta 500,000 tokens con Reformer | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) |
|
|
| [Ajustar BART para resumir](https://github.com/ohmeow/ohmeow_website/blob/master/_notebooks/2020-05-23-text-generation-with-blurr.ipynb) | Cómo ajustar BART para resumir con fastai usando blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/_notebooks/2020-05-23-text-generation-with-blurr.ipynb) |
|
|
| [Ajustar un Transformador previamente entrenado en los tweets de cualquier persona](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | Cómo generar tweets al estilo de tu cuenta de Twitter favorita ajustando un modelo GPT-2 | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) |
|
|
| [Optimizar 🤗 modelos de Hugging Face con pesos y sesgos](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | Un tutorial completo que muestra la integración de W&B con Hugging Face | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) |
|
|
| [Preentrenar Longformer](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | Cómo construir una versión "larga" de modelos preentrenados existentes | [Iz Beltagy](https://beltagy.net) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) |
|
|
| [Ajustar Longformer para control de calidad](https://github.com/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | Cómo ajustar el modelo antiguo para la tarea de control de calidad | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) |
|
|
| [Evaluar modelo con 🤗nlp](https://github.com/patrickvonplaten/notebooks/blob/master/How_to_evaluate_Longformer_on_TriviaQA_using_NLP.ipynb) | Cómo evaluar longformer en TriviaQA con `nlp` | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1m7eTGlPmLRgoPkkA7rkhQdZ9ydpmsdLE?usp=sharing) |
|
|
| [Ajustar fino de T5 para la extracción de amplitud de opinión](https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | Cómo ajustar T5 para la extracción de intervalos de opiniones mediante un formato de texto a texto con PyTorch Lightning | [Lorenzo Ampil](https://github.com/enzoampil) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) |
|
|
| [Ajustar fino de DistilBert para la clasificación multiclase](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb) | Cómo ajustar DistilBert para la clasificación multiclase con PyTorch | [Abhishek Kumar Mishra](https://github.com/abhimishra91) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb)|
|
|
|[Ajustar BERT para la clasificación de etiquetas múltiples](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)| Cómo ajustar BERT para la clasificación de múltiples etiquetas usando PyTorch |[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)|
|
|
|[Ajustar T5 para resumir](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)| Cómo ajustar T5 para resumir en PyTorch y realizar un seguimiento de los experimentos con WandB |[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)|
|
|
|[Acelerar el ajuste fino en transformadores con Dynamic Padding/Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)| Cómo acelerar el ajuste fino en un factor de 2 usando relleno dinámico/cubetas |[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)|
|
|
|[Preentrenar Reformer para modelado de lenguaje enmascarado](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| Cómo entrenar un modelo Reformer con capas de autoatención bidireccionales | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)|
|
|
|[Ampliar y ajustar Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| Cómo aumentar el vocabulario de un modelo SciBERT preentrenado de AllenAI en el conjunto de datos CORD y canalizarlo. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)|
|
|
|[Ajustar fino de BlenderBotSmall para resúmenes usando la API de Entrenador](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| Cómo ajustar BlenderBotSmall para resumir en un conjunto de datos personalizado, utilizando la API de Entrenador. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|
|
|[Ajustar Electra e interpreta con gradientes integrados](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | Cómo ajustar Electra para el análisis de sentimientos e interpretar predicciones con Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)|
|
|
|[ajustar un modelo GPT-2 que no está en inglés con la clase Trainer](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | Cómo ajustar un modelo GPT-2 que no está en inglés con la clase Trainer | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)|
|
|
|[Ajustar un modelo DistilBERT para la tarea de clasificación de múltiples etiquetas](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | Cómo ajustar un modelo DistilBERT para la tarea de clasificación de múltiples etiquetas | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)|
|
|
|[Ajustar ALBERT para la clasificación de pares de oraciones](https://github.com/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb) | Cómo ajustar un modelo ALBERT u otro modelo basado en BERT para la tarea de clasificación de pares de oraciones | [Nadir El Manouzi](https://github.com/NadirEM) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb)|
|
|
|[Ajustar a Roberta para el análisis de sentimientos](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | Cómo ajustar un modelo de Roberta para el análisis de sentimientos | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)|
|
|
|[Evaluación de modelos de generación de preguntas](https://github.com/flexudy-pipe/qugeev) | ¿Qué tan precisas son las respuestas a las preguntas generadas por tu modelo de transformador seq2seq? | [Pascal Zoleko](https://github.com/zolekode) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)|
|
|
|[Clasificar texto con DistilBERT y Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | Cómo ajustar DistilBERT para la clasificación de texto en TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)|
|
|
|[Aprovechar BERT para el resumen de codificador y decodificador en CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* con un punto de control *google-bert/bert-base-uncased* para resumir en CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)|
|
|
|[Aprovechar RoBERTa para el resumen de codificador-decodificador en BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* compartido con un punto de control *FacebookAI/roberta-base* para resumir en BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)|
|
|
|[Ajustar TAPAS en Sequential Question Answering (SQA)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb) | Cómo ajustar *TapasForQuestionAnswering* con un punto de control *tapas-base* en el conjunto de datos del Sequential Question Answering (SQA) | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb)|
|
|
|[Evaluar TAPAS en Table Fact Checking (TabFact)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb) | Cómo evaluar un *TapasForSequenceClassification* ajustado con un punto de control *tapas-base-finetuned-tabfact* usando una combinación de 🤗 conjuntos de datos y 🤗 bibliotecas de transformadores | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb)|
|
|
|[Ajustar de mBART para traducción](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb) | Cómo ajustar mBART utilizando Seq2SeqTrainer para la traducción del hindi al inglés | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)|
|
|
|[Ajustar LayoutLM en FUNSD (a form understanding dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb) | Cómo ajustar *LayoutLMForTokenClassification* en el conjunto de datos de FUNSD para la extracción de información de documentos escaneados | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb)|
|
|
|[Ajustar DistilGPT2 y genere texto](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb) | Cómo ajustar DistilGPT2 y generar texto | [Aakash Tripathi](https://github.com/tripathiaakash) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb)|
|
|
|[Ajustar LED en tokens de hasta 8K](https://github.com/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb) | Cómo ajustar LED en pubmed para resúmenes de largo alcance | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb)|
|
|
|[Evaluar LED en Arxiv](https://github.com/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb) | Cómo evaluar efectivamente LED en resúmenes de largo alcance | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb)|
|
|
|[Ajustar fino de LayoutLM en RVL-CDIP (un conjunto de datos de clasificación de imágenes de documentos)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb) | Cómo ajustar *LayoutLMForSequenceClassification* en el conjunto de datos RVL-CDIP para la clasificación de documentos escaneados | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb)|
|
|
|[Decodificación Wav2Vec2 CTC con ajuste GPT2](https://github.com/voidful/huggingface_notebook/blob/main/xlsr_gpt.ipynb) | Cómo decodificar la secuencia CTC con el ajuste del modelo de lenguaje | [Eric Lam](https://github.com/voidful) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)|
|
|
|[Ajustar BART para resúmenes en dos idiomas con la clase Trainer](https://github.com/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb) | Cómo ajustar BART para resúmenes en dos idiomas con la clase Trainer | [Eliza Szczechla](https://github.com/elsanns) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)|
|
|
|[Evaluar Big Bird en Trivia QA](https://github.com/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb) | Cómo evaluar BigBird en respuesta a preguntas de documentos largos en Trivia QA | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb)|
|
|
| [Crear subtítulos de video usando Wav2Vec2](https://github.com/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | Cómo crear subtítulos de YouTube a partir de cualquier vídeo transcribiendo el audio con Wav2Vec | [Niklas Muennighoff](https://github.com/Muennighoff) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) |
|
|
| [Ajustar el transformador de visión en CIFAR-10 usando PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | Cómo ajustar el transformador de visión (ViT) en CIFAR-10 usando transformadores HuggingFace, conjuntos de datos y PyTorch Lightning | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) |
|
|
| [Ajustar el Transformador de visión en CIFAR-10 usando el 🤗 Entrenador](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | Cómo ajustar el Vision Transformer (ViT) en CIFAR-10 usando HuggingFace Transformers, Datasets y el 🤗 Trainer | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) |
|
|
| [Evaluar LUKE en Open Entity, un conjunto de datos de tipificación de entidades](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | Cómo evaluar *LukeForEntityClassification* en el conjunto de datos de entidad abierta | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) |
|
|
| [Evaluar LUKE en TACRED, un conjunto de datos de extracción de relaciones](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | Cómo evaluar *LukeForEntityPairClassification* en el conjunto de datos TACRED | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) |
|
|
| [Evaluar LUKE en CoNLL-2003, un punto de referencia importante de NER](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | Cómo evaluar *LukeForEntitySpanClassification* en el conjunto de datos CoNLL-2003 | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) |
|
|
| [Evaluar BigBird-Pegasus en el conjunto de datos de PubMed](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | Cómo evaluar *BigBirdPegasusForConditionalGeneration* en el conjunto de datos de PubMed | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) |
|
|
| [Clasificación de emociones del habla con Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | Cómo aprovechar un modelo Wav2Vec2 preentrenado para la clasificación de emociones en el conjunto de datos MEGA | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
|
|
| [Detectar objetos en una imagen con DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | Cómo usar un modelo entrenado *DetrForObjectDetection* para detectar objetos en una imagen y visualizar la atención | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
|
|
| [Ajustar el DETR en un conjunto de datos de detección de objetos personalizados](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | Cómo ajustar *DetrForObjectDetection* en un conjunto de datos de detección de objetos personalizados | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |
|
|
| [Ajustar T5 para el reconocimiento de entidades nombradas](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | Cómo ajustar *T5* en una tarea de reconocimiento de entidad nombrada | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) |
|