CogVLM/finetune_demo/evaluate_cogagent_demo.py

248 lines
10 KiB
Python

import os
import torch
import argparse
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from sat import mpu, get_args, get_tokenizer
from sat.training.deepspeed_training import training_main
from sat.helpers import print_rank0
from collections import defaultdict
from functools import partial
from utils.models import FineTuneTestCogAgentModel
from utils.utils import llama2_text_processor, llama2_text_processor_inference, get_image_processor
def data_collator(examples, cross_image_processor=None):
def to_tensor(value):
"""Converts lists or numpy arrays to tensors."""
if isinstance(value, list):
return torch.tensor(value)
elif isinstance(value, np.ndarray):
return torch.from_numpy(value)
return value
def concatenate_tensors(attribute, key):
"""Concatenates tensors for a specific attribute and key."""
if attribute is None:
return torch.cat([ex[key] for ex in examples if isinstance(ex[key], torch.Tensor)])
else:
return torch.cat([ex[attribute][key] for ex in examples if isinstance(ex[attribute][key], torch.Tensor)])
# Convert all lists and numpy arrays in examples to tensors
for example in examples:
for key, value in example.items():
example[key] = to_tensor(value)
# Extract and concatenate attributes from examples
img_args = {}
for attribute in ['vision', 'cross']:
if attribute == 'cross' and cross_image_processor is None:
continue
if attribute in examples[-1]: # Using the last example as reference
for key in examples[-1][attribute]:
tensor_key = f"{attribute}_{key}"
tensors_to_concatenate = [ex[attribute][key] for ex in examples if isinstance(ex[attribute][key], torch.Tensor)]
if tensors_to_concatenate:
img_args[tensor_key] = concatenate_tensors(attribute, key)
else:
img_args[tensor_key] = examples[-1][attribute][key]
# Remove 'vision' and 'cross' keys from examples
for example in examples:
example.pop('vision', None)
example.pop('cross', None)
# Create model_args by concatenating tensors and copying other attributes
model_args = {key: concatenate_tensors(None, key)
if isinstance(examples[-1][key], torch.Tensor) else examples[-1][key]
for key in examples[-1]
}
# Merge img_args into model_args
model_args.update(img_args)
return model_args
def broadcast_auto(data_dict):
# Classify keys based on their data type
tensor_keys_by_dtype = defaultdict(list)
non_tensor_keys = []
for key, value in data_dict.items():
if isinstance(value, torch.Tensor):
tensor_keys_by_dtype[value.dtype].append(key)
else:
non_tensor_keys.append(key)
# Broadcast tensor data and collect in a new dictionary
broadcasted_data = {}
for dtype, keys in tensor_keys_by_dtype.items():
broadcasted_data.update(mpu.broadcast_data(keys, data_dict, dtype))
# Add non-tensor data to the new dictionary
for key in non_tensor_keys:
broadcasted_data[key] = data_dict[key]
return broadcasted_data
def get_batch(data_iterator, args, timers):
# Broadcast data.
timers('data loader').start()
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
timers('data loader').stop()
data_b = broadcast_auto(data)
for k in data_b:
if type(data_b[k]) is torch.Tensor and data_b[k].dtype is not torch.int32 and data_b[k].dtype is not torch.long:
if args.fp16:
data_b[k] = data_b[k].half()
elif args.bf16:
data_b[k] = data_b[k].bfloat16()
return data_b
from torch.nn import CrossEntropyLoss
import numpy as np
from sat.model.mixins import CachedAutoregressiveMixin
from sat.generation.autoregressive_sampling import filling_sequence
from sat.generation.sampling_strategies import BaseStrategy, BeamSearchStrategy
def chat(model, tokenizer, tokens,
max_length: int = 1800, num_beams=5, top_p=0.95, top_k=0, temperature=0.8, **kwargs):
inputs = tokens.to(model.parameters().__next__().device)[0]
seq = torch.cat(
[inputs, torch.tensor([-1] * (max_length - len(inputs)), device=inputs.device)], dim=0
)
strategy = BaseStrategy(temperature=temperature, top_p=0.4, top_k=1, end_tokens=[tokenizer.eos_token_id])
# strategy = BeamSearchStrategy(temperature=temperature, top_p=top_p, top_k=top_k, end_tokens=[tokenizer.eos_token_id],
# num_beams=num_beams, consider_end=True)
get_func = llama2_text_processor_inference.get_func(None, None, image_rope_mask=kwargs['image_rope_mask'])
output = filling_sequence(
model, seq,
batch_size=1,
strategy=strategy,
get_masks_and_position_ids=get_func,
**kwargs
)[0] # drop memory
return output
def forward_step_eval(data_iterator, model, args, timers):
def compute_metrics(eval_preds):
preds, labels, device = eval_preds
preds = preds.unsqueeze(0)
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
score_dict = {
"acc": [],
"acc_w/o_case": [],
}
for pred, label in zip(decoded_preds, decoded_labels):
if args.rank == 0:
print('pred', pred, 'label', label, flush=True)
if pred == label:
score_dict['acc'].append(1.)
else:
score_dict['acc'].append(0.)
if pred.lower() == label.lower():
score_dict['acc_w/o_case'].append(1.)
else:
score_dict['acc_w/o_case'].append(0.)
for k, v in score_dict.items():
score_dict[k] = float(np.mean(v))
return score_dict
# Get the batch.
timers('batch generator').start()
data_b = get_batch(
data_iterator, args, timers)
timers('batch generator').stop()
context_len = int(data_b['context_length'][0])
tokens = data_b['input_ids'][:, :context_len]
data_b['vision_expert_mask'] = data_b['vision_expert_mask'][:, :context_len]
data_b['image_embed_mask'] = data_b['image_embed_mask'][:, :context_len]
data_b['image_rope_mask'] = data_b['image_rope_mask'][:, :context_len]
data_b.pop('input_ids')
data_b.pop('attention_mask')
data_b.pop('position_ids')
labels = data_b.pop('labels')
qid = data_b.pop('question_id')
model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
outputs = chat(model, tokenizer, tokens, **data_b)[0][context_len:]
# print(outputs)
model.del_mixin('auto-regressive')
return torch.tensor(0, device=outputs.device), {k: torch.tensor(v, device=outputs.device) for k, v in
compute_metrics(
(outputs.cpu(), labels.cpu(), outputs.device)).items()}
from torch.nn import CrossEntropyLoss
def forward_step(data_iterator, model, args, timers):
"""Forward step."""
# Get the batch.
timers('batch generator').start()
data_b = get_batch(
data_iterator, args, timers)
labels = data_b.pop('labels')
timers('batch generator').stop()
logits = model(**data_b)[0]
lm_logits = logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_labels = labels[..., 1:].contiguous()
shift_logits = lm_logits[..., -1-shift_labels.size(-1):-1, :].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss = loss.to(torch.float32)
return loss, {'loss': loss}
from utils.utils import ItemDataset
def create_dataset_function(image_processor, text_processor, cross_image_processor, path, args):
dataset = ItemDataset(image_processor, text_processor, args, path, cross_image_processor=cross_image_processor)
return dataset
if __name__ == '__main__':
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--max_length', type=int)
py_parser.add_argument('--ignore_pad_token_for_loss', action='store_false')
py_parser.add_argument("--version", type=str, default="chat", help='version to interact with')
py_parser.add_argument("--from_pretrained", type=str, default="cogagent-chat", help='pretrained ckpt')
py_parser.add_argument("--local_tokenizer", type=str, default="lmsys/vicuna-7b-v1.5", help='tokenizer path')
py_parser.add_argument("--vit_checkpoint_activations", action='store_true')
py_parser = FineTuneTestCogAgentModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
if args.use_qlora:
args.device = 'cpu'
model, args = FineTuneTestCogAgentModel.from_pretrained(args.from_pretrained, args, overwrite_args={'model_parallel_size': args.model_parallel_size} if args.model_parallel_size != 1 else {})
if args.use_qlora and torch.cuda.is_available():
model = model.to('cuda')
from utils.utils import llama2_tokenizer
tokenizer = llama2_tokenizer(args.local_tokenizer, signal_type=args.version)
image_processor = get_image_processor(args.eva_args["image_size"][0])
cross_image_processor = get_image_processor(args.cross_image_pix)
text_processor = llama2_text_processor(tokenizer, args.max_length, args.image_length)
training_main(args, model_cls=model, forward_step_function=forward_step, create_dataset_function=partial(create_dataset_function, image_processor, text_processor, cross_image_processor), collate_fn=partial(data_collator, cross_image_processor=cross_image_processor), forward_step_eval=forward_step_eval)