mirror of https://github.com/open-mmlab/mmpose
84 lines
3.5 KiB
Markdown
84 lines
3.5 KiB
Markdown
# Simple Keypoints
|
||
|
||
## Description
|
||
|
||
Author: @2120140200@mail.nankai.edu.cn
|
||
|
||
It is a simple keypoints detector model. The model predict a score heatmap and an encoded location map.
|
||
The result in wflw achieves 3.94 NME.
|
||
|
||
## Usage
|
||
|
||
### Prerequisites
|
||
|
||
- Python 3.7
|
||
- PyTorch 1.6 or higher
|
||
- [MIM](https://github.com/open-mmlab/mim) v0.33 or higher
|
||
- [MMPose](https://github.com/open-mmlab/mmpose) v1.0.0rc0 or higher
|
||
|
||
All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `example_project/` root directory, run the following line to add the current directory to `PYTHONPATH`:
|
||
|
||
```shell
|
||
export PYTHONPATH=`pwd`:$PYTHONPATH
|
||
```
|
||
|
||
### Data Preparation
|
||
|
||
Prepare the COCO dataset according to the [instruction](https://mmpose.readthedocs.io/en/dev-1.x/dataset_zoo/2d_body_keypoint.html#coco).
|
||
|
||
### Training commands
|
||
|
||
**To train with single GPU:**
|
||
|
||
```shell
|
||
mim train mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py
|
||
```
|
||
|
||
**To train with multiple GPUs:**
|
||
|
||
```shell
|
||
mim train mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py --launcher pytorch --gpus 8
|
||
```
|
||
|
||
**To train with multiple GPUs by slurm:**
|
||
|
||
```shell
|
||
mim train mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py --launcher slurm \
|
||
--gpus 16 --gpus-per-node 8 --partition $PARTITION
|
||
```
|
||
|
||
### Testing commands
|
||
|
||
**To test with single GPU:**
|
||
|
||
```shell
|
||
mim test mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py -C $CHECKPOINT
|
||
```
|
||
|
||
**To test with multiple GPUs:**
|
||
|
||
```shell
|
||
mim test mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py -C $CHECKPOINT --launcher pytorch --gpus 8
|
||
```
|
||
|
||
**To test with multiple GPUs by slurm:**
|
||
|
||
```shell
|
||
mim test mmpose configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py -C $CHECKPOINT --launcher slurm \
|
||
--gpus 16 --gpus-per-node 8 --partition $PARTITION
|
||
```
|
||
|
||
## Results
|
||
|
||
WFLW
|
||
|
||
| Arch | Input Size | NME<sub>*test*</sub> | NME<sub>*pose*</sub> | NME<sub>*illumination*</sub> | NME<sub>*occlusion*</sub> | NME<sub>*blur*</sub> | NME<sub>*makeup*</sub> | NME<sub>*expression*</sub> | ckpt | log |
|
||
| :--------- | :--------: | :------------------: | :------------------: | :--------------------------: | :-----------------------: | :------------------: | :--------------------: | :------------------------: | :--------: | :-------: |
|
||
| [skps](./configs/td-hm_hrnetv2-w18_skps-1xb64-80e_wflw-256x256.py) | 256x256 | 3.88 | 6.60 | 3.81 | 4.57 | 4.44 | 3.75 | 4.13 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/skps/best_NME_epoch_80.pth) | [log](https://download.openmmlab.com/mmpose/v1/projects/skps/20230522_142437.log) |
|
||
|
||
COFW
|
||
|
||
| Arch | Input Size | NME | ckpt | log |
|
||
| :------------------------------------------------------------- | :--------: | :--: | :------------------------------------------------------------: | :------------------------------------------------------------: |
|
||
| [skps](./configs/td-hm_hrnetv2-w18_skps-1xb16-160e_cofw-256x256.py) | 256x256 | 3.20 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/skps/best_NME_epoch_113.pth) | [log](https://download.openmmlab.com/mmpose/v1/projects/skps/20230524_074949.log) |
|