mmpose/projects/rtmpose/examples/rtmlib/README.md

125 lines
4.5 KiB
Markdown

# rtmlib
![demo](https://github.com/Tau-J/rtmlib/assets/13503330/b7e8ce8b-3134-43cf-bba6-d81656897289)
rtmlib is a super lightweight library to conduct pose estimation based on [RTMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose) models **WITHOUT** any dependencies like mmcv, mmpose, mmdet, etc.
Basically, rtmlib only requires these dependencies:
- numpy
- opencv-python
- opencv-contrib-python
- onnxruntime
Optionally, you can use other common backends like opencv, onnxruntime, openvino, tensorrt to accelerate the inference process.
- For openvino users, please add the path `<your python path>\envs\<your env name>\Lib\site-packages\openvino\libs` into your environment path.
## Installation
- install from pypi:
```shell
pip install rtmlib -i https://pypi.org/simple
```
- install from source code:
```shell
git clone https://github.com/Tau-J/rtmlib.git
cd rtmlib
pip install -r requirements.txt
pip install -e .
# [optional]
# pip install onnxruntime-gpu
# pip install openvino
```
## Quick Start
Run `webui.py`:
```shell
# Please make sure you have installed gradio
# pip install gradio
python webui.py
```
![image](https://github.com/Tau-J/rtmlib/assets/13503330/49ef11a1-a1b5-4a20-a2e1-d49f8be6a25d)
Here is also a simple demo to show how to use rtmlib to conduct pose estimation on a single image.
```python
import cv2
from rtmlib import Wholebody, draw_skeleton
device = 'cpu' # cpu, cuda
backend = 'onnxruntime' # opencv, onnxruntime, openvino
img = cv2.imread('./demo.jpg')
openpose_skeleton = False # True for openpose-style, False for mmpose-style
wholebody = Wholebody(to_openpose=openpose_skeleton,
mode='balanced', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'
backend=backend, device=device)
keypoints, scores = wholebody(img)
# visualize
# if you want to use black background instead of original image,
# img_show = np.zeros(img_show.shape, dtype=np.uint8)
img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.5)
cv2.imshow('img', img_show)
cv2.waitKey()
```
### Visualization
| MMPose-style | OpenPose-style |
| :-------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------: |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/c9e6fbaa-00f0-4961-ac87-d881edca778b"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/9afc996a-59e6-4200-a655-59dae10b46c4"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/b12e5f60-fec0-42a1-b7b6-365e93894fb1"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/5acf7431-6ef0-44a8-ae52-9d8c8cb988c9"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/091b8ce3-32d5-463b-9f41-5c683afa7a11"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/4ffc7be1-50d6-44ff-8c6b-22ea8975aad4"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/6fddfc14-7519-42eb-a7a4-98bf5441f324"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/2523e568-e0c3-4c2e-8e54-d1a67100c537"> |
### Citation
```
@misc{rtmlib,
title={rtmlib},
author={Jiang, Tao},
year={2023},
howpublished = {\url{https://github.com/Tau-J/rtmlib}},
}
@misc{jiang2023,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
@misc{lu2023rtmo,
title={{RTMO}: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation},
author={Peng Lu and Tao Jiang and Yining Li and Xiangtai Li and Kai Chen and Wenming Yang},
year={2023},
eprint={2312.07526},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```