mmpose/projects/rtmpose/benchmark/README_CN.md

117 lines
7.9 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# RTMPose Benchmarks
简体中文 | [English](./README.md)
欢迎社区用户在不同硬件设备上进行推理速度测试,贡献到本项目目录下。
当前已测试:
- CPU
- Intel i7-11700
- GPU
- NVIDIA GeForce 1660 Ti
- NVIDIA GeForce RTX 3090
- Nvidia Jetson
- AGX Orin
- Orin NX
- ARM
- Snapdragon 865
### 人体 2d 关键点 (17 Keypoints)
### Model Info
| Config | Input Size | AP<sup><br>(COCO) | Params(M) | FLOPS(G) |
| :-------------------------------------------------------------------------------: | :--------: | :---------------: | :-------: | :------: |
| [RTMPose-t](../rtmpose/body_2d_keypoint/rtmpose-tiny_8xb256-420e_coco-256x192.py) | 256x192 | 68.5 | 3.34 | 0.36 |
| [RTMPose-s](../rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py) | 256x192 | 72.2 | 5.47 | 0.68 |
| [RTMPose-m](../rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py) | 256x192 | 75.8 | 13.59 | 1.93 |
| [RTMPose-l](../rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-256x192.py) | 256x192 | 76.5 | 27.66 | 4.16 |
| [RTMPose-m](../rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py) | 384x288 | 77.0 | 13.72 | 4.33 |
| [RTMPose-l](../rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py) | 384x288 | 77.3 | 27.79 | 9.35 |
### Speed Benchmark
图中所示为模型推理时间,单位毫秒。
| Config | Input Size | ORT<sup><br>(i7-11700) | TRT-FP16<sup><br>(GTX 1660Ti) | TRT-FP16<sup><br>(RTX 3090) | ncnn-FP16<sup><br>(Snapdragon 865) | TRT-FP16<sup><br>(Jetson AGX Orin) | TRT-FP16<sup><br>(Jetson Orin NX) |
| :---------: | :--------: | :--------------------: | :---------------------------: | :-------------------------: | :--------------------------------: | :--------------------------------: | :-------------------------------: |
| [RTMPose-t](../rtmpose/body_2d_keypoint/rtmpose-tiny_8xb256-420e_coco-256x192.py) | 256x192 | 3.20 | 1.06 | 0.98 | 9.02 | 1.63 | 1.97 |
| [RTMPose-s](../rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py) | 256x192 | 4.48 | 1.39 | 1.12 | 13.89 | 1.85 | 2.18 |
| [RTMPose-m](../rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py) | 256x192 | 11.06 | 2.29 | 1.18 | 26.44 | 2.72 | 3.35 |
| [RTMPose-l](../rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-256x192.py) | 256x192 | 18.85 | 3.46 | 1.37 | 45.37 | 3.67 | 4.78 |
| [RTMPose-m](../rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py) | 384x288 | 24.78 | 3.66 | 1.20 | 26.44 | 3.45 | 5.08 |
| [RTMPose-l](../rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py) | 384x288 | - | 6.05 | 1.74 | - | 4.93 | 7.23 |
### 人体全身 2d 关键点 (133 Keypoints)
### Model Info
| Config | Input Size | Whole AP | Whole AR | FLOPS(G) |
| :------------------------------------------------------------------------------------------- | :--------: | :------: | :------: | :------: |
| [RTMPose-m](../rtmpose/wholebody_2d_keypoint/rtmpose-m_8xb64-270e_coco-wholebody-256x192.py) | 256x192 | 60.4 | 66.7 | 2.22 |
| [RTMPose-l](../rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb64-270e_coco-wholebody-256x192.py) | 256x192 | 63.2 | 69.4 | 4.52 |
| [RTMPose-l](../rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py) | 384x288 | 67.0 | 72.3 | 10.07 |
### Speed Benchmark
- 图中所示为模型推理时间,单位毫秒。
- 来自不同社区用户的测试数据用 `|` 分隔开。
| Config | Input Size | ORT<sup><br>(i7-11700) | TRT-FP16<sup><br>(GTX 1660Ti) | TRT-FP16<sup><br>(RTX 3090) | TRT-FP16<sup><br>(Jetson AGX Orin) | TRT-FP16<sup><br>(Jetson Orin NX) |
| :-------------------------------------------- | :--------: | :--------------------: | :---------------------------: | :-------------------------: | :--------------------------------: | :-------------------------------: |
| [RTMPose-m](../rtmpose/wholebody_2d_keypoint/rtmpose-m_8xb64-270e_coco-wholebody-256x192.py) | 256x192 | 13.50 | 4.00 | 1.17 \| 1.84 | 2.79 | 3.51 |
| [RTMPose-l](../rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb64-270e_coco-wholebody-256x192.py) | 256x192 | 23.41 | 5.67 | 1.44 \| 2.61 | 3.80 | 4.95 |
| [RTMPose-l](../rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py) | 384x288 | 44.58 | 7.68 | 1.75 \| 4.24 | 5.08 | 7.20 |
## 如何测试推理速度
我们使用 MMDeploy 提供的 `tools/profiler.py` 脚本进行模型测速。
用户需要准备一个存放测试图片的文件夹`./test_images`profiler 将随机从该目录下抽取图片用于模型测速。
```shell
python tools/profiler.py \
configs/mmpose/pose-detection_simcc_onnxruntime_dynamic.py \
{RTMPOSE_PROJECT}/rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py \
../test_images \
--model {WORK_DIR}/end2end.onnx \
--shape 256x192 \
--device cpu \
--warmup 50 \
--num-iter 200
```
The result is as follows:
```shell
01/30 15:06:35 - mmengine - INFO - [onnxruntime]-70 times per count: 8.73 ms, 114.50 FPS
01/30 15:06:36 - mmengine - INFO - [onnxruntime]-90 times per count: 9.05 ms, 110.48 FPS
01/30 15:06:37 - mmengine - INFO - [onnxruntime]-110 times per count: 9.87 ms, 101.32 FPS
01/30 15:06:37 - mmengine - INFO - [onnxruntime]-130 times per count: 9.99 ms, 100.10 FPS
01/30 15:06:38 - mmengine - INFO - [onnxruntime]-150 times per count: 10.39 ms, 96.29 FPS
01/30 15:06:39 - mmengine - INFO - [onnxruntime]-170 times per count: 10.77 ms, 92.86 FPS
01/30 15:06:40 - mmengine - INFO - [onnxruntime]-190 times per count: 10.98 ms, 91.05 FPS
01/30 15:06:40 - mmengine - INFO - [onnxruntime]-210 times per count: 11.19 ms, 89.33 FPS
01/30 15:06:41 - mmengine - INFO - [onnxruntime]-230 times per count: 11.16 ms, 89.58 FPS
01/30 15:06:42 - mmengine - INFO - [onnxruntime]-250 times per count: 11.06 ms, 90.41 FPS
----- Settings:
+------------+---------+
| batch size | 1 |
| shape | 256x192 |
| iterations | 200 |
| warmup | 50 |
+------------+---------+
----- Results:
+--------+------------+---------+
| Stats | Latency/ms | FPS |
+--------+------------+---------+
| Mean | 11.060 | 90.412 |
| Median | 11.852 | 84.375 |
| Min | 7.812 | 128.007 |
| Max | 13.690 | 73.044 |
+--------+------------+---------+
```
If you want to learn more details of profiler, you can refer to the [Profiler Docs](https://mmdeploy.readthedocs.io/en/latest/02-how-to-run/useful_tools.html#profiler).