mmpose/projects/awesome-mmpose/README.md

81 lines
3.3 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Awesome MMPose
A list of resources related to MMPose. Feel free to contribute!
<div align=center>
<img src="https://user-images.githubusercontent.com/13503330/231416285-5467d313-0732-4ada-97e1-12be6ec69a28.png" width="800"/>
</div><br/>
## Contents
- [Tutorials](#tutorials)
- [Papers](#papers)
- [Datasets](#datasets)
- [Projects](#projects)
## Tutorials
- [MMPose Tutorial (Chinese)](https://github.com/TommyZihao/MMPose_Tutorials)
MMPose 中文视频代码教程from 同济子豪兄
<div align=center>
<img src="https://user-images.githubusercontent.com/13503330/231640277-777f611c-b3d9-4d41-830f-8e48a352fd01.jpg" width="500"/>
</div><br/>
- [OpenMMLab Course](https://github.com/open-mmlab/OpenMMLabCourse)
This repository hosts articles, lectures and tutorials on computer vision and OpenMMLab, helping learners to understand algorithms and master our toolboxes in a systematical way.
## Papers
- [\[paper\]](https://arxiv.org/abs/2207.10387) [\[code\]](https://github.com/luminxu/Pose-for-Everything)
ECCV 2022, Pose for Everything: Towards Category-Agnostic Pose Estimation
- [\[paper\]](https://arxiv.org/abs/2201.04676) [\[code\]](https://github.com/Sense-X/UniFormer)
ICLR 2022, UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning
- [\[paper\]](https://arxiv.org/abs/2201.07412) [\[code\]](https://github.com/aim-uofa/Poseur)
ECCV 2022, Poseur:Direct Human Pose Regression with Transformers
- [\[paper\]](https://arxiv.org/abs/2106.03348) [\[code\]](https://github.com/ViTAE-Transformer/ViTAE-Transformer)
NeurIPS 2022, ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond
- [\[paper\]](https://arxiv.org/abs/2204.10762) [\[code\]](https://github.com/ZiyiZhang27/Dite-HRNet)
IJCAI-ECAI 2021, Dite-HRNet:Dynamic Lightweight High-Resolution Network for Human Pose Estimation
- [\[paper\]](https://arxiv.org/abs/2302.08453) [\[code\]](https://github.com/TencentARC/T2I-Adapter)
T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
- [\[paper\]](https://arxiv.org/pdf/2303.11638.pdf) [\[code\]](https://github.com/Gengzigang/PCT)
CVPR 2023, Human Pose as Compositional Tokens
## Datasets
- [\[github\]](https://github.com/luminxu/Pose-for-Everything) **MP-100**
Multi-category Pose (MP-100) dataset, which is a 2D pose dataset of 100 object categories containing over 20K instances and is well-designed for developing CAPE algorithms.
<div align=center>
<img src="https://user-images.githubusercontent.com/13503330/231639551-b32ed2ab-aec0-4410-937e-c81a2ac2cb0d.png" width="500"/>
</div><br/>
- [\[github\]](https://github.com/facebookresearch/Ego4d/) **Ego4D**
EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated video and a wide range of annotations across five new benchmark tasks. It covers hundreds of scenarios (household, outdoor, workplace, leisure, etc.) of daily life activity captured in-the-wild by 926 unique camera wearers from 74 worldwide locations and 9 different countries.
<div align=center>
<img src="https://user-images.githubusercontent.com/13503330/231640003-d43028cc-6f83-45e7-b76a-8e8f0cddcfcb.png" width="500"/>
</div><br/>
## Projects
Waiting for your contribution!