mmpose/docs/en/dataset_zoo/2d_wholebody_keypoint.md

216 lines
7.6 KiB
Markdown

# 2D Wholebody Keypoint Datasets
It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
MMPose supported datasets:
- [COCO-WholeBody](#coco-wholebody) \[ [Homepage](https://github.com/jin-s13/COCO-WholeBody/) \]
- [Halpe](#halpe) \[ [Homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/) \]
## COCO-WholeBody
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-030-58545-7_12">COCO-WholeBody (ECCV'2020)</a></summary>
```bibtex
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
```
</details>
<div align="center">
<img src="https://user-images.githubusercontent.com/100993824/227770977-c8f00355-c43a-467e-8444-d307789cf4b2.png" height="300px">
</div>
For [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody/) dataset, images can be downloaded from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation.
Download COCO-WholeBody annotations for COCO-WholeBody annotations for [Train](https://drive.google.com/file/d/1thErEToRbmM9uLNi1JXXfOsaS5VK2FXf/view?usp=sharing) / [Validation](https://drive.google.com/file/d/1N6VgwKnj8DeyGXCvp1eYgNbRmw6jdfrb/view?usp=sharing) (Google Drive).
Download person detection result of COCO val2017 from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── coco
│-- annotations
│ │-- coco_wholebody_train_v1.0.json
│ |-- coco_wholebody_val_v1.0.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
│-- train2017
│ │-- 000000000009.jpg
│ │-- 000000000025.jpg
│ │-- 000000000030.jpg
│ │-- ...
`-- val2017
│-- 000000000139.jpg
│-- 000000000285.jpg
│-- 000000000632.jpg
│-- ...
```
Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) (version>=1.5) to support COCO-WholeBody evaluation:
`pip install xtcocotools`
## Halpe
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://arxiv.org/abs/2004.00945">Halpe (CVPR'2020)</a></summary>
```bibtex
@inproceedings{li2020pastanet,
title={PaStaNet: Toward Human Activity Knowledge Engine},
author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
booktitle={CVPR},
year={2020}
}
```
</details>
<div align="center">
<img src="https://user-images.githubusercontent.com/100993824/227771087-b839ea5b-4461-4ba7-8a9a-823b78e2ca44.png" height="300px">
</div>
For [Halpe](https://github.com/Fang-Haoshu/Halpe-FullBody/) dataset, please download images and annotations from [Halpe download](https://github.com/Fang-Haoshu/Halpe-FullBody).
The images of the training set are from [HICO-Det](https://drive.google.com/open?id=1QZcJmGVlF9f4h-XLWe9Gkmnmj2z1gSnk) and those of the validation set are from [COCO](http://images.cocodataset.org/zips/val2017.zip).
Download person detection result of COCO val2017 from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── halpe
│-- annotations
│ │-- halpe_train_v1.json
│ |-- halpe_val_v1.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
│-- hico_20160224_det
│ │-- anno_bbox.mat
│ │-- anno.mat
│ │-- README
│ │-- images
│ │ │-- train2015
│ │ │ │-- HICO_train2015_00000001.jpg
│ │ │ │-- HICO_train2015_00000002.jpg
│ │ │ │-- HICO_train2015_00000003.jpg
│ │ │ │-- ...
│ │ │-- test2015
│ │-- tools
│ │-- ...
`-- val2017
│-- 000000000139.jpg
│-- 000000000285.jpg
│-- 000000000632.jpg
│-- ...
```
Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) (version>=1.5) to support Halpe evaluation:
`pip install xtcocotools`
## UBody
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://arxiv.org/abs/2303.16160">UBody (CVPR'2023)</a></summary>
```bibtex
@article{lin2023one,
title={One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer},
author={Lin, Jing and Zeng, Ailing and Wang, Haoqian and Zhang, Lei and Li, Yu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023},
}
```
</details>
<div align="center">
<img src="https://github.com/open-mmlab/mmpose/assets/15952744/0c97e43a-46a9-46a3-a5dd-b84bf9d6d6f2" height="300px">
</div>
For [Ubody](https://github.com/IDEA-Research/OSX) dataset, videos and annotations can be downloaded from [OSX homepage](https://github.com/IDEA-Research/OSX).
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── UBody
├── annotations
│   ├── ConductMusic
│   ├── Entertainment
│   ├── Fitness
│   ├── Interview
│   ├── LiveVlog
│   ├── Magic_show
│   ├── Movie
│   ├── Olympic
│   ├── Online_class
│   ├── SignLanguage
│   ├── Singing
│   ├── Speech
│   ├── TVShow
│   ├── TalkShow
│   └── VideoConference
├── splits
│   ├── inter_scene_test_list.npy
│   └── intra_scene_test_list.npy
├── videos
│   ├── ConductMusic
│   ├── Entertainment
│   ├── Fitness
│   ├── Interview
│   ├── LiveVlog
│   ├── Magic_show
│   ├── Movie
│   ├── Olympic
│   ├── Online_class
│   ├── SignLanguage
│   ├── Singing
│   ├── Speech
│   ├── TVShow
│   ├── TalkShow
│   └── VideoConference
```
Convert videos to images then split them into train/val set:
```shell
python tools/dataset_converters/ubody_kpts_to_coco.py
```
Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) (version>=1.5) to support COCO-WholeBody evaluation:
`pip install xtcocotools`