mirror of https://github.com/open-mmlab/mmpose
349 lines
12 KiB
Markdown
349 lines
12 KiB
Markdown
# 2D Hand Keypoint Datasets
|
|
|
|
It is recommended to symlink the dataset root to `$MMPOSE/data`.
|
|
If your folder structure is different, you may need to change the corresponding paths in config files.
|
|
|
|
MMPose supported datasets:
|
|
|
|
- [OneHand10K](#onehand10k) \[ [Homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html) \]
|
|
- [FreiHand](#freihand-dataset) \[ [Homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/) \]
|
|
- [CMU Panoptic HandDB](#cmu-panoptic-handdb) \[ [Homepage](http://domedb.perception.cs.cmu.edu/handdb.html) \]
|
|
- [InterHand2.6M](#interhand26m) \[ [Homepage](https://mks0601.github.io/InterHand2.6M/) \]
|
|
- [RHD](#rhd-dataset) \[ [Homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html) \]
|
|
- [COCO-WholeBody-Hand](#coco-wholebody-hand) \[ [Homepage](https://github.com/jin-s13/COCO-WholeBody/) \]
|
|
|
|
## OneHand10K
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="https://ieeexplore.ieee.org/abstract/document/8529221/">OneHand10K (TCSVT'2019)</a></summary>
|
|
|
|
```bibtex
|
|
@article{wang2018mask,
|
|
title={Mask-pose cascaded cnn for 2d hand pose estimation from single color image},
|
|
author={Wang, Yangang and Peng, Cong and Liu, Yebin},
|
|
journal={IEEE Transactions on Circuits and Systems for Video Technology},
|
|
volume={29},
|
|
number={11},
|
|
pages={3258--3268},
|
|
year={2018},
|
|
publisher={IEEE}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227771101-03a27bd8-ccc0-4eb9-a111-660f191a7a16.png" height="200px">
|
|
</div>
|
|
|
|
For [OneHand10K](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html) data, please download from [OneHand10K Dataset](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html).
|
|
Please download the annotation files from [onehand10k_annotations](https://download.openmmlab.com/mmpose/datasets/onehand10k_annotations.tar).
|
|
Extract them under {MMPose}/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── onehand10k
|
|
|── annotations
|
|
| |── onehand10k_train.json
|
|
| |── onehand10k_test.json
|
|
`── Train
|
|
| |── source
|
|
| |── 0.jpg
|
|
| |── 1.jpg
|
|
| ...
|
|
`── Test
|
|
|── source
|
|
|── 0.jpg
|
|
|── 1.jpg
|
|
|
|
```
|
|
|
|
## FreiHAND Dataset
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="http://openaccess.thecvf.com/content_ICCV_2019/html/Zimmermann_FreiHAND_A_Dataset_for_Markerless_Capture_of_Hand_Pose_and_ICCV_2019_paper.html">FreiHand (ICCV'2019)</a></summary>
|
|
|
|
```bibtex
|
|
@inproceedings{zimmermann2019freihand,
|
|
title={Freihand: A dataset for markerless capture of hand pose and shape from single rgb images},
|
|
author={Zimmermann, Christian and Ceylan, Duygu and Yang, Jimei and Russell, Bryan and Argus, Max and Brox, Thomas},
|
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
|
pages={813--822},
|
|
year={2019}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227771101-03a27bd8-ccc0-4eb9-a111-660f191a7a16.png" height="200px">
|
|
</div>
|
|
|
|
For [FreiHAND](https://lmb.informatik.uni-freiburg.de/projects/freihand/) data, please download from [FreiHand Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html).
|
|
Since the official dataset does not provide validation set, we randomly split the training data into 8:1:1 for train/val/test.
|
|
Please download the annotation files from [freihand_annotations](https://download.openmmlab.com/mmpose/datasets/frei_annotations.tar).
|
|
Extract them under {MMPose}/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── freihand
|
|
|── annotations
|
|
| |── freihand_train.json
|
|
| |── freihand_val.json
|
|
| |── freihand_test.json
|
|
`── training
|
|
|── rgb
|
|
| |── 00000000.jpg
|
|
| |── 00000001.jpg
|
|
| ...
|
|
|── mask
|
|
|── 00000000.jpg
|
|
|── 00000001.jpg
|
|
...
|
|
```
|
|
|
|
## CMU Panoptic HandDB
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2017/html/Simon_Hand_Keypoint_Detection_CVPR_2017_paper.html">CMU Panoptic HandDB (CVPR'2017)</a></summary>
|
|
|
|
```bibtex
|
|
@inproceedings{simon2017hand,
|
|
title={Hand keypoint detection in single images using multiview bootstrapping},
|
|
author={Simon, Tomas and Joo, Hanbyul and Matthews, Iain and Sheikh, Yaser},
|
|
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
|
|
pages={1145--1153},
|
|
year={2017}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227771101-03a27bd8-ccc0-4eb9-a111-660f191a7a16.png" height="200px">
|
|
</div>
|
|
|
|
For [CMU Panoptic HandDB](http://domedb.perception.cs.cmu.edu/handdb.html), please download from [CMU Panoptic HandDB](http://domedb.perception.cs.cmu.edu/handdb.html).
|
|
Following [Simon et al](https://arxiv.org/abs/1704.07809), panoptic images (hand143_panopticdb) and MPII & NZSL training sets (manual_train) are used for training, while MPII & NZSL test set (manual_test) for testing.
|
|
Please download the annotation files from [panoptic_annotations](https://download.openmmlab.com/mmpose/datasets/panoptic_annotations.tar).
|
|
Extract them under {MMPose}/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── panoptic
|
|
|── annotations
|
|
| |── panoptic_train.json
|
|
| |── panoptic_test.json
|
|
|
|
|
`── hand143_panopticdb
|
|
| |── imgs
|
|
| | |── 00000000.jpg
|
|
| | |── 00000001.jpg
|
|
| | ...
|
|
|
|
|
`── hand_labels
|
|
|── manual_train
|
|
| |── 000015774_01_l.jpg
|
|
| |── 000015774_01_r.jpg
|
|
| ...
|
|
|
|
|
`── manual_test
|
|
|── 000648952_02_l.jpg
|
|
|── 000835470_01_l.jpg
|
|
...
|
|
```
|
|
|
|
## InterHand2.6M
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="https://link.springer.com/content/pdf/10.1007/978-3-030-58565-5_33.pdf">InterHand2.6M (ECCV'2020)</a></summary>
|
|
|
|
```bibtex
|
|
@InProceedings{Moon_2020_ECCV_InterHand2.6M,
|
|
author = {Moon, Gyeongsik and Yu, Shoou-I and Wen, He and Shiratori, Takaaki and Lee, Kyoung Mu},
|
|
title = {InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image},
|
|
booktitle = {European Conference on Computer Vision (ECCV)},
|
|
year = {2020}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227771753-5df1d722-59bd-4815-b85f-64a5ef79bbf5.png" height="200px">
|
|
</div>
|
|
|
|
For [InterHand2.6M](https://mks0601.github.io/InterHand2.6M/), please download from [InterHand2.6M](https://mks0601.github.io/InterHand2.6M/).
|
|
Please download the annotation files from [annotations](https://download.openmmlab.com/mmpose/datasets/interhand2.6m_annotations.zip).
|
|
Extract them under {MMPose}/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── interhand2.6m
|
|
|── annotations
|
|
| |── all
|
|
| |── human_annot
|
|
| |── machine_annot
|
|
| |── skeleton.txt
|
|
| |── subject.txt
|
|
|
|
|
`── images
|
|
| |── train
|
|
| | |-- Capture0 ~ Capture26
|
|
| |── val
|
|
| | |-- Capture0
|
|
| |── test
|
|
| | |-- Capture0 ~ Capture7
|
|
```
|
|
|
|
## RHD Dataset
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="https://lmb.informatik.uni-freiburg.de/projects/hand3d/">RHD (ICCV'2017)</a></summary>
|
|
|
|
```bibtex
|
|
@TechReport{zb2017hand,
|
|
author={Christian Zimmermann and Thomas Brox},
|
|
title={Learning to Estimate 3D Hand Pose from Single RGB Images},
|
|
institution={arXiv:1705.01389},
|
|
year={2017},
|
|
note="https://arxiv.org/abs/1705.01389",
|
|
url="https://lmb.informatik.uni-freiburg.de/projects/hand3d/"
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227772014-f7406a2b-2e64-42fb-8081-200d40104553.png" height="200px">
|
|
</div>
|
|
|
|
For [RHD Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html), please download from [RHD Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html).
|
|
Please download the annotation files from [rhd_annotations](https://download.openmmlab.com/mmpose/datasets/rhd_annotations.zip).
|
|
Extract them under {MMPose}/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── rhd
|
|
|── annotations
|
|
| |── rhd_train.json
|
|
| |── rhd_test.json
|
|
`── training
|
|
| |── color
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
| |── depth
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
| |── mask
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
`── evaluation
|
|
| |── color
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
| |── depth
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
| |── mask
|
|
| | |── 00000.jpg
|
|
| | |── 00001.jpg
|
|
```
|
|
|
|
## COCO-WholeBody (Hand)
|
|
|
|
<!-- [DATASET] -->
|
|
|
|
<details>
|
|
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-030-58545-7_12">COCO-WholeBody-Hand (ECCV'2020)</a></summary>
|
|
|
|
```bibtex
|
|
@inproceedings{jin2020whole,
|
|
title={Whole-Body Human Pose Estimation in the Wild},
|
|
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
|
|
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
|
|
year={2020}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
<div align="center">
|
|
<img src="https://user-images.githubusercontent.com/100993824/227771101-03a27bd8-ccc0-4eb9-a111-660f191a7a16.png" height="200px">
|
|
</div>
|
|
|
|
For [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody/) dataset, images can be downloaded from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation.
|
|
Download COCO-WholeBody annotations for COCO-WholeBody annotations for [Train](https://drive.google.com/file/d/1thErEToRbmM9uLNi1JXXfOsaS5VK2FXf/view?usp=sharing) / [Validation](https://drive.google.com/file/d/1N6VgwKnj8DeyGXCvp1eYgNbRmw6jdfrb/view?usp=sharing) (Google Drive).
|
|
Download person detection result of COCO val2017 from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
|
|
Download and extract them under $MMPOSE/data, and make them look like this:
|
|
|
|
```text
|
|
mmpose
|
|
├── mmpose
|
|
├── docs
|
|
├── tests
|
|
├── tools
|
|
├── configs
|
|
`── data
|
|
│── coco
|
|
│-- annotations
|
|
│ │-- coco_wholebody_train_v1.0.json
|
|
│ |-- coco_wholebody_val_v1.0.json
|
|
|-- person_detection_results
|
|
| |-- COCO_val2017_detections_AP_H_56_person.json
|
|
│-- train2017
|
|
│ │-- 000000000009.jpg
|
|
│ │-- 000000000025.jpg
|
|
│ │-- 000000000030.jpg
|
|
│ │-- ...
|
|
`-- val2017
|
|
│-- 000000000139.jpg
|
|
│-- 000000000285.jpg
|
|
│-- 000000000632.jpg
|
|
│-- ...
|
|
```
|
|
|
|
Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) to support COCO-WholeBody evaluation:
|
|
|
|
`pip install xtcocotools`
|