mirror of https://github.com/open-mmlab/mmpose
3.0 KiB
3.0 KiB
Top-down heatmap-based pose estimation
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking.

Results and Models
COCO-WholeBody Dataset
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Model | Input Size | Whole AP | Whole AR | Details and Download |
---|---|---|---|---|
HRNet-w48+Dark+ | 384x288 | 0.661 | 0.743 | hrnet_dark_coco-wholebody.md |
HRNet-w32+Dark | 256x192 | 0.582 | 0.671 | hrnet_dark_coco-wholebody.md |
HRNet-w48 | 256x192 | 0.579 | 0.681 | hrnet_coco-wholebody.md |
CSPNeXt-m | 256x192 | 0.567 | 0.641 | cspnext_udp_coco-wholebody.md |
HRNet-w32 | 256x192 | 0.549 | 0.646 | hrnet_ubody-coco-wholebody.md |
ResNet-152 | 256x192 | 0.548 | 0.661 | resnet_coco-wholebody.md |
HRNet-w32 | 256x192 | 0.536 | 0.636 | hrnet_coco-wholebody.md |
ResNet-101 | 256x192 | 0.531 | 0.645 | resnet_coco-wholebody.md |
S-ViPNAS-Res50+Dark | 256x192 | 0.528 | 0.632 | vipnas_dark_coco-wholebody.md |
ResNet-50 | 256x192 | 0.521 | 0.633 | resnet_coco-wholebody.md |
S-ViPNAS-Res50 | 256x192 | 0.495 | 0.607 | vipnas_coco-wholebody.md |
UBody2D Dataset
Result on UBody val set, computed with gt keypoints.
Model | Input Size | Whole AP | Whole AR | Details and Download |
---|---|---|---|---|
HRNet-w32 | 256x192 | 0.690 | 0.729 | hrnet_ubody-coco-wholebody.md |