mirror of https://github.com/open-mmlab/mmpose
3.5 KiB
3.5 KiB
RTMPose (arXiv'2023)
@misc{https://doi.org/10.48550/arxiv.2303.07399,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
RTMDet (arXiv'2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
- Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset.
Face6
and*
denote model trained on 6 public datasets:
Config | Input Size | NME (LaPa) |
FLOPS (G) |
Download |
---|---|---|---|---|
RTMPose-t* | 256x256 | 1.67 | 0.652 | Model |
RTMPose-s* | 256x256 | 1.59 | 1.119 | Model |
RTMPose-m* | 256x256 | 1.44 | 2.852 | Model |