mmpose/configs/body_2d_keypoint/rtmo/crowdpose/rtmo_crowdpose.md

3.2 KiB

RTMO
@misc{lu2023rtmo,
      title={{RTMO}: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation},
      author={Peng Lu and Tao Jiang and Yining Li and Xiangtai Li and Kai Chen and Wenming Yang},
      year={2023},
      eprint={2312.07526},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
CrowdPose (CVPR'2019)
@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}

Results on COCO val2017

Arch Input Size AP AP50 AP75 AP (E) AP (M) AP (H) ckpt log
RTMO-s 640x640 0.673 0.882 0.729 0.737 0.682 0.591 ckpt log
RTMO-m 640x640 0.711 0.897 0.771 0.774 0.719 0.634 ckpt log
RTMO-l 640x640 0.732 0.907 0.793 0.792 0.741 0.653 ckpt log
RTMO-l* 640x640 0.838 0.947 0.893 0.888 0.847 0.772 ckpt log

* indicates the model is trained using a combined dataset composed of AI Challenger, COCO, CrowdPose, Halpe, MPII, PoseTrack18 and sub-JHMDB.