mirror of https://github.com/open-mmlab/mmpose
3.2 KiB
3.2 KiB
RTMO
@misc{lu2023rtmo,
title={{RTMO}: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation},
author={Peng Lu and Tao Jiang and Yining Li and Xiangtai Li and Kai Chen and Wenming Yang},
year={2023},
eprint={2312.07526},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
CrowdPose (CVPR'2019)
@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
journal={arXiv preprint arXiv:1812.00324},
year={2018}
}
Results on COCO val2017
Arch | Input Size | AP | AP50 | AP75 | AP (E) | AP (M) | AP (H) | ckpt | log |
---|---|---|---|---|---|---|---|---|---|
RTMO-s | 640x640 | 0.673 | 0.882 | 0.729 | 0.737 | 0.682 | 0.591 | ckpt | log |
RTMO-m | 640x640 | 0.711 | 0.897 | 0.771 | 0.774 | 0.719 | 0.634 | ckpt | log |
RTMO-l | 640x640 | 0.732 | 0.907 | 0.793 | 0.792 | 0.741 | 0.653 | ckpt | log |
RTMO-l* | 640x640 | 0.838 | 0.947 | 0.893 | 0.888 | 0.847 | 0.772 | ckpt | log |
* indicates the model is trained using a combined dataset composed of AI Challenger, COCO, CrowdPose, Halpe, MPII, PoseTrack18 and sub-JHMDB.