mirror of https://github.com/open-mmlab/mmpose
2.8 KiB
2.8 KiB
ED-Pose (ICLR'2023)
@inproceedings{
yang2023explicit,
title={Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation},
author={Jie Yang and Ailing Zeng and Shilong Liu and Feng Li and Ruimao Zhang and Lei Zhang},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=s4WVupnJjmX}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
Results on COCO val2017.
Arch | BackBone | AP | AP50 | AP75 | AR | AR50 | ckpt | log |
---|---|---|---|---|---|---|---|---|
edpose_res50_coco | ResNet-50 | 0.716 | 0.897 | 0.783 | 0.793 | 0.943 | ckpt | log |
The checkpoint is converted from the official repo. The training of EDPose is not supported yet. It will be supported in the future updates.
The above config follows Pure Python style. Please install mmengine>=0.8.2
to use this config.