mirror of https://github.com/open-mmlab/mmpose
5.3 KiB
5.3 KiB
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
AnimalKingdom (CVPR'2022)
@InProceedings{
Ng_2022_CVPR,
author = {Ng, Xun Long and Ong, Kian Eng and Zheng, Qichen and Ni, Yun and Yeo, Si Yong and Liu, Jun},
title = {Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {19023-19034}
}
Results on AnimalKingdom validation set
Arch | Input Size | PCK(0.05) | Official Repo | Paper | ckpt | log |
---|---|---|---|---|---|---|
P1_hrnet_w32 | 256x256 | 0.6323 | 0.6342 | 0.6606 | ckpt | log |
P2_hrnet_w32 | 256x256 | 0.3741 | 0.3726 | 0.393 | ckpt | log |
P3_mammals_hrnet_w32 | 256x256 | 0.571 | 0.5719 | 0.6159 | ckpt | log |
P3_amphibians_hrnet_w32 | 256x256 | 0.5358 | 0.5432 | 0.5674 | ckpt | log |
P3_reptiles_hrnet_w32 | 256x256 | 0.51 | 0.5 | 0.5606 | ckpt | log |
P3_birds_hrnet_w32 | 256x256 | 0.7671 | 0.7636 | 0.7735 | ckpt | log |
P3_fishes_hrnet_w32 | 256x256 | 0.6406 | 0.636 | 0.6825 | ckpt | log |