mirror of https://github.com/open-mmlab/mmpose
351 lines
27 KiB
Markdown
351 lines
27 KiB
Markdown
<div align="center">
|
||
<img src="resources/mmpose-logo.png" width="450"/>
|
||
<div> </div>
|
||
<div align="center">
|
||
<b>OpenMMLab website</b>
|
||
<sup>
|
||
<a href="https://openmmlab.com">
|
||
<i>HOT</i>
|
||
</a>
|
||
</sup>
|
||
|
||
<b>OpenMMLab platform</b>
|
||
<sup>
|
||
<a href="https://platform.openmmlab.com">
|
||
<i>TRY IT OUT</i>
|
||
</a>
|
||
</sup>
|
||
</div>
|
||
<div> </div>
|
||
|
||
[](https://mmpose.readthedocs.io/en/latest/?badge=latest)
|
||
[](https://github.com/open-mmlab/mmpose/actions)
|
||
[](https://codecov.io/gh/open-mmlab/mmpose)
|
||
[](https://pypi.org/project/mmpose/)
|
||
[](https://github.com/open-mmlab/mmpose/blob/main/LICENSE)
|
||
[](https://github.com/open-mmlab/mmpose/issues)
|
||
[](https://github.com/open-mmlab/mmpose/issues)
|
||
[](https://openxlab.org.cn/apps?search=mmpose)
|
||
|
||
[📘Documentation](https://mmpose.readthedocs.io/en/latest/) |
|
||
[🛠️Installation](https://mmpose.readthedocs.io/en/latest/installation.html) |
|
||
[👀Model Zoo](https://mmpose.readthedocs.io/en/latest/model_zoo.html) |
|
||
[📜Papers](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html) |
|
||
[🆕Update News](https://mmpose.readthedocs.io/en/latest/notes/changelog.html) |
|
||
[🤔Reporting Issues](https://github.com/open-mmlab/mmpose/issues/new/choose) |
|
||
[🔥RTMPose](/projects/rtmpose/)
|
||
|
||
</div>
|
||
|
||
<div align="center">
|
||
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
||
<a href="https://discord.com/channels/1037617289144569886/1072798105428299817" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
||
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
||
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
||
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
|
||
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
||
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
|
||
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
|
||
</div>
|
||
|
||
## Introduction
|
||
|
||
English | [简体中文](README_CN.md)
|
||
|
||
MMPose is an open-source toolbox for pose estimation based on PyTorch.
|
||
It is a part of the [OpenMMLab project](https://github.com/open-mmlab).
|
||
|
||
The main branch works with **PyTorch 1.8+**.
|
||
|
||
https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4
|
||
|
||
<br/>
|
||
|
||
<details close>
|
||
<summary><b>Major Features</b></summary>
|
||
|
||
- **Support diverse tasks**
|
||
|
||
We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation.
|
||
See [Demo](demo/docs/en) for more information.
|
||
|
||
- **Higher efficiency and higher accuracy**
|
||
|
||
MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).
|
||
See [benchmark.md](docs/en/notes/benchmark.md) for more information.
|
||
|
||
- **Support for various datasets**
|
||
|
||
The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc.
|
||
See [dataset_zoo](docs/en/dataset_zoo) for more information.
|
||
|
||
- **Well designed, tested and documented**
|
||
|
||
We decompose MMPose into different components and one can easily construct a customized
|
||
pose estimation framework by combining different modules.
|
||
We provide detailed documentation and API reference, as well as unittests.
|
||
|
||
</details>
|
||
|
||
## What's New
|
||
|
||
- Release [RTMW3D](/projects/rtmpose3d), a real-time model for 3D wholebody pose estimation.
|
||
|
||
- Release [RTMO](/projects/rtmo), a state-of-the-art real-time method for multi-person pose estimation.
|
||
|
||

|
||
|
||
- Release [RTMW](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw_cocktail14.md) models in various sizes ranging from RTMW-m to RTMW-x. The input sizes include `256x192` and `384x288`. This provides flexibility to select the right model for different speed and accuracy requirements.
|
||
|
||
- Support inference of [PoseAnything](/projects/pose_anything). Web demo is available [here](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything).
|
||
|
||
- Support for new datasets:
|
||
|
||
- (ICCV 2015) [300VW](/docs/en/dataset_zoo/2d_face_keypoint.md)
|
||
|
||
- Welcome to use the [*MMPose project*](/projects/README.md). Here, you can discover the latest features and algorithms in MMPose and quickly share your ideas and code implementations with the community. Adding new features to MMPose has become smoother:
|
||
|
||
- Provides a simple and fast way to add new algorithms, features, and applications to MMPose.
|
||
- More flexible code structure and style, fewer restrictions, and a shorter code review process.
|
||
- Utilize the powerful capabilities of MMPose in the form of independent projects without being constrained by the code framework.
|
||
- Newly added projects include:
|
||
- [RTMPose](/projects/rtmpose/)
|
||
- [RTMO](/projects/rtmo/)
|
||
- [RTMPose3D](/projects/rtmpose3d/)
|
||
- [PoseAnything](/projects/pose_anything/)
|
||
- [YOLOX-Pose](/projects/yolox_pose/)
|
||
- [MMPose4AIGC](/projects/mmpose4aigc/)
|
||
- [Simple Keypoints](/projects/skps/)
|
||
- [Just Dance](/projects/just_dance/)
|
||
- [Uniformer](/projects/uniformer/)
|
||
- Start your journey as an MMPose contributor with a simple [example project](/projects/example_project/), and let's build a better MMPose together!
|
||
|
||
<br/>
|
||
|
||
- January 4, 2024: MMPose [v1.3.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) has been officially released, with major updates including:
|
||
|
||
- Support for new datasets: ExLPose, H3WB
|
||
- Release of new RTMPose series models: RTMO, RTMW
|
||
- Support for new algorithm PoseAnything
|
||
- Enhanced Inferencer with optional progress bar and improved affinity for one-stage methods
|
||
|
||
Please check the complete [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) for more details on the updates brought by MMPose v1.3.0!
|
||
|
||
## 0.x / 1.x Migration
|
||
|
||
MMPose v1.0.0 is a major update, including many API and config file changes. Currently, a part of the algorithms have been migrated to v1.0.0, and the remaining algorithms will be completed in subsequent versions. We will show the migration progress in this [Roadmap](https://github.com/open-mmlab/mmpose/issues/2258).
|
||
|
||
If your algorithm has not been migrated, you can continue to use the [0.x branch](https://github.com/open-mmlab/mmpose/tree/0.x) and [old documentation](https://mmpose.readthedocs.io/en/0.x/).
|
||
|
||
## Installation
|
||
|
||
Please refer to [installation.md](https://mmpose.readthedocs.io/en/latest/installation.html) for more detailed installation and dataset preparation.
|
||
|
||
## Getting Started
|
||
|
||
We provided a series of tutorials about the basic usage of MMPose for new users:
|
||
|
||
1. For the basic usage of MMPose:
|
||
|
||
- [A 20-minute Tour to MMPose](https://mmpose.readthedocs.io/en/latest/guide_to_framework.html)
|
||
- [Demos](https://mmpose.readthedocs.io/en/latest/demos.html)
|
||
- [Inference](https://mmpose.readthedocs.io/en/latest/user_guides/inference.html)
|
||
- [Configs](https://mmpose.readthedocs.io/en/latest/user_guides/configs.html)
|
||
- [Prepare Datasets](https://mmpose.readthedocs.io/en/latest/user_guides/prepare_datasets.html)
|
||
- [Train and Test](https://mmpose.readthedocs.io/en/latest/user_guides/train_and_test.html)
|
||
- [Deployment](https://mmpose.readthedocs.io/en/latest/user_guides/how_to_deploy.html)
|
||
- [Model Analysis](https://mmpose.readthedocs.io/en/latest/user_guides/model_analysis.html)
|
||
- [Dataset Annotation and Preprocessing](https://mmpose.readthedocs.io/en/latest/user_guides/dataset_tools.html)
|
||
|
||
2. For developers who wish to develop based on MMPose:
|
||
|
||
- [Learn about Codecs](https://mmpose.readthedocs.io/en/latest/advanced_guides/codecs.html)
|
||
- [Dataflow in MMPose](https://mmpose.readthedocs.io/en/latest/advanced_guides/dataflow.html)
|
||
- [Implement New Models](https://mmpose.readthedocs.io/en/latest/advanced_guides/implement_new_models.html)
|
||
- [Customize Datasets](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_datasets.html)
|
||
- [Customize Data Transforms](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_transforms.html)
|
||
- [Customize Evaluation](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_evaluation.html)
|
||
- [Customize Optimizer](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_optimizer.html)
|
||
- [Customize Logging](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_logging.html)
|
||
- [How to Deploy](https://mmpose.readthedocs.io/en/latest/user_guides/how_to_deploy.html)
|
||
- [Model Analysis](https://mmpose.readthedocs.io/en/latest/user_guides/model_analysis.html)
|
||
- [Migration Guide](https://mmpose.readthedocs.io/en/latest/migration.html)
|
||
|
||
3. For researchers and developers who are willing to contribute to MMPose:
|
||
|
||
- [Contribution Guide](https://mmpose.readthedocs.io/en/latest/contribution_guide.html)
|
||
|
||
4. For some common issues, we provide a FAQ list:
|
||
|
||
- [FAQ](https://mmpose.readthedocs.io/en/latest/faq.html)
|
||
|
||
## Model Zoo
|
||
|
||
Results and models are available in the **README.md** of each method's config directory.
|
||
A summary can be found in the [Model Zoo](https://mmpose.readthedocs.io/en/latest/model_zoo.html) page.
|
||
|
||
<details open>
|
||
<summary><b>Supported algorithms:</b></summary>
|
||
|
||
- [x] [DeepPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014)
|
||
- [x] [CPM](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#cpm-cvpr-2016) (CVPR'2016)
|
||
- [x] [Hourglass](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hourglass-eccv-2016) (ECCV'2016)
|
||
- [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017)
|
||
- [ ] [Associative Embedding](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017)
|
||
- [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018)
|
||
- [x] [DSNT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#dsnt-2018) (ArXiv'2021)
|
||
- [x] [HRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019)
|
||
- [x] [IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#ipr-eccv-2018) (ECCV'2018)
|
||
- [x] [VideoPose3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019)
|
||
- [x] [HRNetv2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019)
|
||
- [x] [MSPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019)
|
||
- [x] [SCNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#scnet-cvpr-2020) (CVPR'2020)
|
||
- [ ] [HigherHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020)
|
||
- [x] [RSN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#rsn-eccv-2020) (ECCV'2020)
|
||
- [x] [InterNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#internet-eccv-2020) (ECCV'2020)
|
||
- [ ] [VoxelPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020)
|
||
- [x] [LiteHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021)
|
||
- [x] [ViPNAS](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021)
|
||
- [x] [Debias-IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#debias-ipr-iccv-2021) (ICCV'2021)
|
||
- [x] [SimCC](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simcc-eccv-2022) (ECCV'2022)
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>Supported techniques:</b></summary>
|
||
|
||
- [x] [FPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fpn-cvpr-2017) (CVPR'2017)
|
||
- [x] [FP16](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017)
|
||
- [x] [Wingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018)
|
||
- [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019)
|
||
- [x] [DarkPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020)
|
||
- [x] [UDP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#udp-cvpr-2020) (CVPR'2020)
|
||
- [x] [Albumentations](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#albumentations-information-2020) (Information'2020)
|
||
- [x] [SoftWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#softwingloss-tip-2021) (TIP'2021)
|
||
- [x] [RLE](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#rle-iccv-2021) (ICCV'2021)
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>Supported datasets:</b></summary>
|
||
|
||
- [x] [AFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011)
|
||
- [x] [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013)
|
||
- [x] [COFW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013)
|
||
- [x] [MPII](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014)
|
||
- [x] [Human3.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014)
|
||
- [x] [COCO](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014)
|
||
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015)
|
||
- [x] [300VW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-VW/)\] (ICCV'2015)
|
||
- [x] [DeepFashion](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016)
|
||
- [x] [300W](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016)
|
||
- [x] [RHD](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017)
|
||
- [x] [CMU Panoptic HandDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-handdb-cvpr-2017) \[[homepage](http://domedb.perception.cs.cmu.edu/handdb.html)\] (CVPR'2017)
|
||
- [x] [AI Challenger](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017)
|
||
- [x] [MHP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018)
|
||
- [x] [WFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018)
|
||
- [x] [PoseTrack18](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018)
|
||
- [x] [OCHuman](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019)
|
||
- [x] [CrowdPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019)
|
||
- [x] [MPII-TRB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019)
|
||
- [x] [FreiHand](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019)
|
||
- [x] [Animal-Pose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019)
|
||
- [x] [OneHand10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019)
|
||
- [x] [Vinegar Fly](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019)
|
||
- [x] [Desert Locust](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
|
||
- [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
|
||
- [x] [ATRW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020)
|
||
- [x] [Halpe](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020)
|
||
- [x] [COCO-WholeBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020)
|
||
- [x] [MacaquePose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020)
|
||
- [x] [InterHand2.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020)
|
||
- [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021)
|
||
- [x] [Horse-10](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021)
|
||
- [x] [Human-Art](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human-art-cvpr-2023) \[[homepage](https://idea-research.github.io/HumanArt/)\] (CVPR'2023)
|
||
- [x] [LaPa](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#lapa-aaai-2020) \[[homepage](https://github.com/JDAI-CV/lapa-dataset)\] (AAAI'2020)
|
||
- [x] [UBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023) \[[homepage](https://github.com/IDEA-Research/OSX)\] (CVPR'2023)
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>Supported backbones:</b></summary>
|
||
|
||
- [x] [AlexNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012)
|
||
- [x] [VGG](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vgg-iclr-2015) (ICLR'2015)
|
||
- [x] [ResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnet-cvpr-2016) (CVPR'2016)
|
||
- [x] [ResNext](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnext-cvpr-2017) (CVPR'2017)
|
||
- [x] [SEResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018)
|
||
- [x] [ShufflenetV1](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018)
|
||
- [x] [ShufflenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018)
|
||
- [x] [MobilenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018)
|
||
- [x] [ResNetV1D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019)
|
||
- [x] [ResNeSt](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020)
|
||
- [x] [Swin](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#swin-cvpr-2021) (CVPR'2021)
|
||
- [x] [HRFormer](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrformer-nips-2021) (NIPS'2021)
|
||
- [x] [PVT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvt-iccv-2021) (ICCV'2021)
|
||
- [x] [PVTV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)
|
||
|
||
</details>
|
||
|
||
### Model Request
|
||
|
||
We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in [MMPose Roadmap](https://github.com/open-mmlab/mmpose/issues/2258).
|
||
|
||
## Contributing
|
||
|
||
We appreciate all contributions to improve MMPose. Please refer to [CONTRIBUTING.md](https://mmpose.readthedocs.io/en/latest/contribution_guide.html) for the contributing guideline.
|
||
|
||
## Acknowledgement
|
||
|
||
MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies.
|
||
We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
|
||
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.
|
||
|
||
## Citation
|
||
|
||
If you find this project useful in your research, please consider cite:
|
||
|
||
```bibtex
|
||
@misc{mmpose2020,
|
||
title={OpenMMLab Pose Estimation Toolbox and Benchmark},
|
||
author={MMPose Contributors},
|
||
howpublished = {\url{https://github.com/open-mmlab/mmpose}},
|
||
year={2020}
|
||
}
|
||
```
|
||
|
||
## License
|
||
|
||
This project is released under the [Apache 2.0 license](LICENSE).
|
||
|
||
## Projects in OpenMMLab
|
||
|
||
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
|
||
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
|
||
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
|
||
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
|
||
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
|
||
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
|
||
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
|
||
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
|
||
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
|
||
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
|
||
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
|
||
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
|
||
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
|
||
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
|
||
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
|
||
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.
|
||
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
|
||
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
|
||
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.
|