mirror of https://github.com/open-mmlab/mmengine
291 lines
9.6 KiB
Markdown
291 lines
9.6 KiB
Markdown
# 训练语义分割模型
|
||
|
||
语义分割的样例大体可以分成四个步骤:
|
||
|
||
- [下载 Camvid 数据集](#下载-camvid-数据集)
|
||
- [实现 Camvid 数据类](#实现-camvid-数据类)
|
||
- [实现语义分割模型](#实现语义分割模型)
|
||
- [使用 Runner 训练模型](#使用-runner-训练模型)
|
||
|
||
```{note}
|
||
如果你更喜欢 notebook 风格的样例,也可以在[此处](https://colab.research.google.com/github/open-mmlab/mmengine/blob/main/examples/segmentation/train.ipynb) 体验。
|
||
```
|
||
|
||
## 下载 Camvid 数据集
|
||
|
||
首先,从 opendatalab 下载 Camvid 数据集:
|
||
|
||
```bash
|
||
# https://opendatalab.com/CamVid
|
||
# Configure install
|
||
pip install opendatalab
|
||
# Upgraded version
|
||
pip install -U opendatalab
|
||
# Login
|
||
odl login
|
||
# Download this dataset
|
||
mkdir data
|
||
odl get CamVid -d data
|
||
# Preprocess data in Linux. You should extract the files to data manually in
|
||
# Windows
|
||
tar -xzvf data/CamVid/raw/CamVid.tar.gz.00 -C ./data
|
||
```
|
||
|
||
## 实现 Camvid 数据类
|
||
|
||
实现继承自 VisionDataset 的 CamVid 数据类。在这个类中,我们重写了`__getitem__`和`__len__`方法,以确保每个索引返回一个包含图像和标签的字典。此外,我们还实现了color_to_class字典,将 mask 的颜色映射到类别索引。
|
||
|
||
```python
|
||
import os
|
||
import numpy as np
|
||
from torchvision.datasets import VisionDataset
|
||
from PIL import Image
|
||
import csv
|
||
|
||
|
||
def create_palette(csv_filepath):
|
||
color_to_class = {}
|
||
with open(csv_filepath, newline='') as csvfile:
|
||
reader = csv.DictReader(csvfile)
|
||
for idx, row in enumerate(reader):
|
||
r, g, b = int(row['r']), int(row['g']), int(row['b'])
|
||
color_to_class[(r, g, b)] = idx
|
||
return color_to_class
|
||
|
||
class CamVid(VisionDataset):
|
||
|
||
def __init__(self,
|
||
root,
|
||
img_folder,
|
||
mask_folder,
|
||
transform=None,
|
||
target_transform=None):
|
||
super().__init__(
|
||
root, transform=transform, target_transform=target_transform)
|
||
self.img_folder = img_folder
|
||
self.mask_folder = mask_folder
|
||
self.images = list(
|
||
sorted(os.listdir(os.path.join(self.root, img_folder))))
|
||
self.masks = list(
|
||
sorted(os.listdir(os.path.join(self.root, mask_folder))))
|
||
self.color_to_class = create_palette(
|
||
os.path.join(self.root, 'class_dict.csv'))
|
||
|
||
def __getitem__(self, index):
|
||
img_path = os.path.join(self.root, self.img_folder, self.images[index])
|
||
mask_path = os.path.join(self.root, self.mask_folder,
|
||
self.masks[index])
|
||
|
||
img = Image.open(img_path).convert('RGB')
|
||
mask = Image.open(mask_path).convert('RGB') # Convert to RGB
|
||
|
||
if self.transform is not None:
|
||
img = self.transform(img)
|
||
|
||
# Convert the RGB values to class indices
|
||
mask = np.array(mask)
|
||
mask = mask[:, :, 0] * 65536 + mask[:, :, 1] * 256 + mask[:, :, 2]
|
||
labels = np.zeros_like(mask, dtype=np.int64)
|
||
for color, class_index in self.color_to_class.items():
|
||
rgb = color[0] * 65536 + color[1] * 256 + color[2]
|
||
labels[mask == rgb] = class_index
|
||
|
||
if self.target_transform is not None:
|
||
labels = self.target_transform(labels)
|
||
data_samples = dict(
|
||
labels=labels, img_path=img_path, mask_path=mask_path)
|
||
return img, data_samples
|
||
|
||
def __len__(self):
|
||
return len(self.images)
|
||
|
||
```
|
||
|
||
基于 CamVid 数据类,选择相应的数据增强方式,构建 train_dataloader 和 val_dataloader,供后续 runner 使用
|
||
|
||
```python
|
||
import torch
|
||
import torchvision.transforms as transforms
|
||
|
||
norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||
transform = transforms.Compose(
|
||
[transforms.ToTensor(),
|
||
transforms.Normalize(**norm_cfg)])
|
||
|
||
target_transform = transforms.Lambda(
|
||
lambda x: torch.tensor(np.array(x), dtype=torch.long))
|
||
|
||
train_set = CamVid(
|
||
'data/CamVid',
|
||
img_folder='train',
|
||
mask_folder='train_labels',
|
||
transform=transform,
|
||
target_transform=target_transform)
|
||
|
||
valid_set = CamVid(
|
||
'data/CamVid',
|
||
img_folder='val',
|
||
mask_folder='val_labels',
|
||
transform=transform,
|
||
target_transform=target_transform)
|
||
|
||
train_dataloader = dict(
|
||
batch_size=3,
|
||
dataset=train_set,
|
||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||
collate_fn=dict(type='default_collate'))
|
||
|
||
val_dataloader = dict(
|
||
batch_size=3,
|
||
dataset=valid_set,
|
||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||
collate_fn=dict(type='default_collate'))
|
||
```
|
||
|
||
## 实现语义分割模型
|
||
|
||
定义一个名为`MMDeeplabV3`的模型类。该类继承自`BaseModel`,并集成了DeepLabV3架构的分割模型。`MMDeeplabV3` 重写了`forward`方法,以处理输入图像和标签,并支持在训练和预测模式下计算损失和返回预测结果。
|
||
|
||
关于`BaseModel`的更多信息,请参考[模型教程](../tutorials/model.md)。
|
||
|
||
```python
|
||
from mmengine.model import BaseModel
|
||
from torchvision.models.segmentation import deeplabv3_resnet50
|
||
import torch.nn.functional as F
|
||
|
||
|
||
class MMDeeplabV3(BaseModel):
|
||
|
||
def __init__(self, num_classes):
|
||
super().__init__()
|
||
self.deeplab = deeplabv3_resnet50()
|
||
self.deeplab.classifier[4] = torch.nn.Conv2d(
|
||
256, num_classes, kernel_size=(1, 1), stride=(1, 1))
|
||
|
||
def forward(self, imgs, data_samples=None, mode='tensor'):
|
||
x = self.deeplab(imgs)['out']
|
||
if mode == 'loss':
|
||
return {'loss': F.cross_entropy(x, data_samples['labels'])}
|
||
elif mode == 'predict':
|
||
return x, data_samples
|
||
```
|
||
|
||
## 使用 Runner 训练模型
|
||
|
||
在使用 Runner 进行训练之前,我们需要实现 IoU(交并比)指标来评估模型的性能。
|
||
|
||
```python
|
||
from mmengine.evaluator import BaseMetric
|
||
|
||
class IoU(BaseMetric):
|
||
|
||
def process(self, data_batch, data_samples):
|
||
preds, labels = data_samples[0], data_samples[1]['labels']
|
||
preds = torch.argmax(preds, dim=1)
|
||
intersect = (labels == preds).sum()
|
||
union = (torch.logical_or(preds, labels)).sum()
|
||
iou = (intersect / union).cpu()
|
||
self.results.append(
|
||
dict(batch_size=len(labels), iou=iou * len(labels)))
|
||
|
||
def compute_metrics(self, results):
|
||
total_iou = sum(result['iou'] for result in self.results)
|
||
num_samples = sum(result['batch_size'] for result in self.results)
|
||
return dict(iou=total_iou / num_samples)
|
||
```
|
||
|
||
实现可视化钩子(Hook)也很重要,它可以便于更轻松地比较模型预测的好坏。
|
||
|
||
```python
|
||
from mmengine.hooks import Hook
|
||
import shutil
|
||
import cv2
|
||
import os.path as osp
|
||
|
||
|
||
class SegVisHook(Hook):
|
||
|
||
def __init__(self, data_root, vis_num=1) -> None:
|
||
super().__init__()
|
||
self.vis_num = vis_num
|
||
self.palette = create_palette(osp.join(data_root, 'class_dict.csv'))
|
||
|
||
def after_val_iter(self,
|
||
runner,
|
||
batch_idx: int,
|
||
data_batch=None,
|
||
outputs=None) -> None:
|
||
if batch_idx > self.vis_num:
|
||
return
|
||
preds, data_samples = outputs
|
||
img_paths = data_samples['img_path']
|
||
mask_paths = data_samples['mask_path']
|
||
_, C, H, W = preds.shape
|
||
preds = torch.argmax(preds, dim=1)
|
||
for idx, (pred, img_path,
|
||
mask_path) in enumerate(zip(preds, img_paths, mask_paths)):
|
||
pred_mask = np.zeros((H, W, 3), dtype=np.uint8)
|
||
runner.visualizer.set_image(pred_mask)
|
||
for color, class_id in self.palette.items():
|
||
runner.visualizer.draw_binary_masks(
|
||
pred == class_id,
|
||
colors=[color],
|
||
alphas=1.0,
|
||
)
|
||
# Convert RGB to BGR
|
||
pred_mask = runner.visualizer.get_image()[..., ::-1]
|
||
saved_dir = osp.join(runner.log_dir, 'vis_data', str(idx))
|
||
os.makedirs(saved_dir, exist_ok=True)
|
||
|
||
shutil.copyfile(img_path,
|
||
osp.join(saved_dir, osp.basename(img_path)))
|
||
shutil.copyfile(mask_path,
|
||
osp.join(saved_dir, osp.basename(mask_path)))
|
||
cv2.imwrite(
|
||
osp.join(saved_dir, f'pred_{osp.basename(img_path)}'),
|
||
pred_mask)
|
||
```
|
||
|
||
准备完毕,让我们用 Runner 开始训练吧!
|
||
|
||
```python
|
||
from torch.optim import AdamW
|
||
from mmengine.optim import AmpOptimWrapper
|
||
from mmengine.runner import Runner
|
||
|
||
|
||
num_classes = 32 # Modify to actual number of categories.
|
||
|
||
runner = Runner(
|
||
model=MMDeeplabV3(num_classes),
|
||
work_dir='./work_dir',
|
||
train_dataloader=train_dataloader,
|
||
optim_wrapper=dict(
|
||
type=AmpOptimWrapper, optimizer=dict(type=AdamW, lr=2e-4)),
|
||
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=10),
|
||
val_dataloader=val_dataloader,
|
||
val_cfg=dict(),
|
||
val_evaluator=dict(type=IoU),
|
||
custom_hooks=[SegVisHook('data/CamVid')],
|
||
default_hooks=dict(checkpoint=dict(type='CheckpointHook', interval=1)),
|
||
)
|
||
runner.train()
|
||
```
|
||
|
||
训练完成后,你可以在 `./work_dir/{timestamp}/vis_data` 文件夹中找到可视化结果,如下图所示:
|
||
|
||
<table class="docutils">
|
||
<thead>
|
||
<tr>
|
||
<th>原图</th>
|
||
<th>预测结果</th>
|
||
<th>标签</th>
|
||
</tr>
|
||
<tr>
|
||
<th><img src="https://github.com/open-mmlab/mmengine/assets/57566630/de70c138-fb8e-402c-9497-574b01725b6c" width="200"></th>
|
||
<th><img src="https://github.com/open-mmlab/mmengine/assets/57566630/ea9221e7-48ca-4515-8815-56b5ff091f53" width="200"></th>
|
||
<th><img src="https://github.com/open-mmlab/mmengine/assets/57566630/dcb2324f-a2df-4e5c-a038-df896dde2471" width="200"></th>
|
||
</tr>
|
||
</thead>
|
||
</table>
|