mirror of https://github.com/open-mmlab/mmengine
1096 lines
39 KiB
Markdown
1096 lines
39 KiB
Markdown
# Abstract Data Element
|
|
|
|
During the model training and testing, there will be a large amount of data passed through different components, and different algorithms usually have different kinds of data. For example, single-stage detectors may only need ground truth bounding boxes and ground truth box labels, whereas Mask R-CNN also requires the instance masks.
|
|
|
|
The training codes can be shown as:
|
|
|
|
```python
|
|
for img, img_metas, gt_bboxes, gt_labels in data_loader:
|
|
loss = retinanet(img, img_metas, gt_bboxes, gt_labels)
|
|
```
|
|
|
|
```python
|
|
for img, img_metas, gt_bboxes, gt_masks, gt_labels in data_loader:
|
|
loss = mask_rcnn(img, img_metas, gt_bboxes, gt_masks, gt_labels)
|
|
```
|
|
|
|
We can see that without encapsulation, the inconsistency of data required by different algorithms leads to the inconsistency of interfaces among different algorithm modules, which affects the extensibility of the whole algorithm library. Moreover, the modules within one algorithm library often need redundant interfaces in order to maintain compatibility.
|
|
|
|
These disadvantages are more obvious among different algorithm libraries, which makes it difficult to reuse modules and expand interfaces when implementing multi-task perception models (multiple tasks such as semantic segmentation, detection, key point detection, etc.).
|
|
|
|
To solve the above problems, MMEngine defines a set of abstract data interfaces to encapsulate various data during the implementation of the model. Suppose the above different data are encapsulated into `data_sample`, the training of different algorithms can be abstracted and unified into the following code:
|
|
|
|
```python
|
|
for img, data_sample in dataloader:
|
|
loss = model(img, data_sample)
|
|
```
|
|
|
|
The abstracted interface unifies and simplifies the interface between modules in the algorithm library, and can be used to pass data between datasets, models, visualizers, evaluates, or even within different modules in one model.
|
|
|
|
Besides the basic add, delete, update, and query functions, this interface also supports transferring data between different devices and the operation of `dict` and `torch.Tensor`, which can fully satisfy the requirements of the algorithm library.
|
|
|
|
Those algorithm libraries based on MMEngine can inherit from this design and implement their own interfaces to meet the characteristics and custom needs of data in different algorithms, improving the expandability while maintaining a unified interface.
|
|
|
|
During the implementation, there are two types of data interfaces for the algorithm libraries:
|
|
|
|
- A collection of all annotation information and prediction information for a training or testing sample, such as the output of a dataset, the inputs of model and visualizer, typically constitutes all the information of an individual training or testing sample. MMEngine defines this as a `DataSample`.
|
|
- A single type of prediction or annotation, typically the output of a sub-module in an algorithm model, such as the output of the RPN in two-stage detection, the output of a semantic segmentation model, the output of a keypoint branch, or the output of the generator in GANs, is defined by MMEngine as a data element (`XXXData`).
|
|
|
|
The following section first introduces the base class [BaseDataElement](mmengine.structures.BaseDataElement) for `DataSample` and `XXXData`.
|
|
|
|
## BaseDataElement
|
|
|
|
There are two types of data in `BaseDataElement`. One is `data` such as the bounding box, label, and the instance mask, etc., the other is `metainfo` which contains the meta information of the data to ensure the integrity of the data, including `img_shape`, `img_id`, and some other basic information of the images. These information facilitate the recovery and the use of the data in visualization and other cases. Therefore, users need to explicitly distinguish and declare the data of these two types of attributes while creating the `BaseDataElement`.
|
|
|
|
To make it easier to use `BaseDataElement`, the data in both `data` and `metainfo` are attributes of `BaseDataElement`. We can directly access the data and metainfo by accessing the class attributes. In addition, `BaseDataElement` provides several methods for manipulating the data in `data`.
|
|
|
|
- Add, delete, update, and query data in different fields of `data`.
|
|
- Copy `data` to target devices.
|
|
- Support accessing data in the same way as a dictionary or a tensor to fully satisfy the algorithm's requirements.
|
|
|
|
### 1. Create BaseDataElement
|
|
|
|
The data parameter of `BaseDataElement` can be freely added by means of `key=value`. The fields of `metainfo`, however, need to be explicitly specified using the keyword `metainfo`.
|
|
|
|
```python
|
|
import torch
|
|
from mmengine.structures import BaseDataElement
|
|
# declare an empty object
|
|
data_element = BaseDataElement()
|
|
|
|
bboxes = torch.rand((5, 4)) # suppose bboxes is a tensor in the shape of Nx4. N represents the number of the boxes
|
|
scores = torch.rand((5,)) # suppose scores is a tensor with N dimensions. N represents the number of the noxes.
|
|
img_id = 0 # image ID
|
|
H = 800 # image height
|
|
W = 1333 # image width
|
|
|
|
# Set the data parameter directly in BaseDataElement
|
|
data_element = BaseDataElement(bboxes=bboxes, scores=scores)
|
|
|
|
# Explicitly declare the metainfo in BaseDataElement
|
|
data_element = BaseDataElement(
|
|
bboxes=bboxes,
|
|
scores=scores,
|
|
metainfo=dict(img_id=img_id, img_shape=(H, W)))
|
|
```
|
|
|
|
### 2. `new` and `clone`
|
|
|
|
Users can use the `new()` method to create an abstract data interface with the same state and data from an existing data interface. You can set `metainfo` and `data` while creating a new `BaseDataElement` to create an abstract interface with the same state and data as `data` or `metainfo`. For example, `new(metainfo=xx)` makes the new `BaseDataElement` has the same content as the cloned `BaseDataElement`, but `metainfo` is set to the newly specified content. You can also use `clone()` directly to get a deep copy. The behavior of the `clone()` is the same as the `clone()` in PyTorch Tensor operation.
|
|
|
|
```python
|
|
data_element = BaseDataElement(
|
|
bboxes=torch.rand((5, 4)),
|
|
scores=torch.rand((5,)),
|
|
metainfo=dict(img_id=1, img_shape=(640, 640)))
|
|
|
|
# set metainfo and data while creating BaseDataElement
|
|
data_element1 = data_element.new(metainfo=dict(img_id=2, img_shape=(320, 320)))
|
|
print('bboxes is in data_element1:', 'bboxes' in data_element1) # True
|
|
print('bboxes in data_element1 is same as bbox in data_element', (data_element1.bboxes == data_element.bboxes).all())
|
|
print('img_id in data_element1 is', data_element1.img_id == 2) # True
|
|
|
|
data_element2 = data_element.new(label=torch.rand(5,))
|
|
print('bboxes is not in data_element2', 'bboxes' not in data_element2) # True
|
|
print('img_id in data_element2 is same as img_id in data_element', data_element2.img_id == data_element.img_id)
|
|
print('label in data_element2 is', 'label' in data_element2)
|
|
|
|
# create a new object using `clone`, which makes the new object has the same data, same metainfo, and the same status as the data_element
|
|
data_element2 = data_element1.clone()
|
|
```
|
|
|
|
```
|
|
bboxes is in data_element1: True
|
|
bboxes in data_element1 is same as bbox in data_element tensor(True)
|
|
img_id in data_element1 is True
|
|
bboxes is not in data_element2 True
|
|
img_id in data_element2 is same as img_id in data_element True
|
|
label in data_element2 is True
|
|
```
|
|
|
|
### 3. Add and query attributes
|
|
|
|
When it comes to adding attributes, users can add attributes to the `data` in the same way they add class attributes. For `metainfo`, it generally stores metadata about images and is not usually modified. If there is a need to add attributes to `metainfo`, users should use the `set_metainfo` interface to explicitly modify it.
|
|
|
|
For querying, users can access the key-value pairs that exist only in `data` using `keys`, `values`, and `items`. Similarly, they can access the key-value pairs that exist only in `metainfo` using `metainfo_keys`, `metainfo_values`, and `metainfo_items`. Users can also access all attributes of the BaseDataElement, regardless of their type, using `all_keys`, `all_values`, and `all_items`.
|
|
|
|
To facilitate usage, users can access the data within `data` and `metainfo` in the same way they access class attributes. Alternatively, they can use the `get()` interface in a dictionary-like manner to access the data.
|
|
|
|
**Note:**
|
|
|
|
1. `BaseDataElement` does not support having the same field names in both `metainfo` and `data` attributes. Therefore, users should avoid setting the same field names in them, as it would result in an error in `BaseDataElement`.
|
|
|
|
2. Considering that `InstanceData` and `PixelData` support slicing operations on the data, in order to maintain consistency with the use of `[]` and reduce the number of different methods for the same need, BaseDataElement does not support accessing and setting its attributes like a dictionary. Therefore, operations like `BaseDataElement[name]` for value assignment and retrieval are not supported.
|
|
|
|
```python
|
|
data_element = BaseDataElement()
|
|
# Set the `metainfo` field of the data_element using `set_metainfo`,
|
|
# with img_id and img_shape becoming attributes of the data_element.
|
|
data_element.set_metainfo(dict(img_id=9, img_shape=(100, 100)))
|
|
# check metainfo key, value, and item
|
|
print("metainfo'keys are ", data_element.metainfo_keys())
|
|
print("metainfo'values are ", data_element.metainfo_values())
|
|
for k, v in data_element.metainfo_items():
|
|
print(f'{k}: {v}')
|
|
|
|
print("Check img_id and img_shape from class parameters")
|
|
print('img_id: ', data_element.img_id)
|
|
print('img_shape: ', data_element.img_shape)
|
|
```
|
|
|
|
```
|
|
metainfo'keys are ['img_id', 'img_shape']
|
|
metainfo'values are [9, (100, 100)]
|
|
img_id: 9
|
|
img_shape: (100, 100)
|
|
Check img_id and img_shape from class parameters
|
|
img_id: 9
|
|
img_shape: (100, 100)
|
|
```
|
|
|
|
```python
|
|
|
|
# directly set data field via class attributes in BaseDataElement
|
|
data_element.scores = torch.rand((5,))
|
|
data_element.bboxes = torch.rand((5, 4))
|
|
|
|
print("data's key is: ", data_element.keys())
|
|
print("data's value is: ", data_element.values())
|
|
for k, v in data_element.items():
|
|
print(f'{k}: {v}')
|
|
|
|
print("Check scores and bboxes via class attributes")
|
|
print('scores: ', data_element.scores)
|
|
print('bboxes: ', data_element.bboxes)
|
|
|
|
print("Check scores and bboxes via get()")
|
|
print('scores: ', data_element.get('scores', None))
|
|
print('bboxes: ', data_element.get('bboxes', None))
|
|
print('fake: ', data_element.get('fake', 'not exist'))
|
|
```
|
|
|
|
```
|
|
data's key is: ['scores', 'bboxes']
|
|
data's value is: [tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515]), tensor([[0.9204, 0.2110, 0.2886, 0.7925],
|
|
[0.7993, 0.8982, 0.5698, 0.4120],
|
|
[0.7085, 0.7016, 0.3069, 0.3216],
|
|
[0.0206, 0.5253, 0.1376, 0.9322],
|
|
[0.2512, 0.7683, 0.3010, 0.2672]])]
|
|
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
|
|
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
|
|
[0.7993, 0.8982, 0.5698, 0.4120],
|
|
[0.7085, 0.7016, 0.3069, 0.3216],
|
|
[0.0206, 0.5253, 0.1376, 0.9322],
|
|
[0.2512, 0.7683, 0.3010, 0.2672]])
|
|
Check scores and bboxes via class attributes
|
|
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
|
|
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
|
|
[0.7993, 0.8982, 0.5698, 0.4120],
|
|
[0.7085, 0.7016, 0.3069, 0.3216],
|
|
[0.0206, 0.5253, 0.1376, 0.9322],
|
|
[0.2512, 0.7683, 0.3010, 0.2672]])
|
|
Check scores and bboxes via get()
|
|
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
|
|
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
|
|
[0.7993, 0.8982, 0.5698, 0.4120],
|
|
[0.7085, 0.7016, 0.3069, 0.3216],
|
|
[0.0206, 0.5253, 0.1376, 0.9322],
|
|
[0.2512, 0.7683, 0.3010, 0.2672]])
|
|
fake: not exist
|
|
```
|
|
|
|
```python
|
|
|
|
print("All keys in data_element is: ", data_element.all_keys())
|
|
print("The length of values in data_element is: ", len(data_element.all_values()))
|
|
for k, v in data_element.all_items():
|
|
print(f'{k}: {v}')
|
|
```
|
|
|
|
```
|
|
All key in data_element is: ['img_id', 'img_shape', 'scores', 'bboxes']
|
|
The length of values in data_element is 4
|
|
img_id: 9
|
|
img_shape: (100, 100)
|
|
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
|
|
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
|
|
[0.7993, 0.8982, 0.5698, 0.4120],
|
|
[0.7085, 0.7016, 0.3069, 0.3216],
|
|
[0.0206, 0.5253, 0.1376, 0.9322],
|
|
[0.2512, 0.7683, 0.3010, 0.2672]])
|
|
```
|
|
|
|
### 4. Delete and modify attributes
|
|
|
|
Users can modify the `data` attribute of `BaseDataElement` in the same way they modify instance attributes. As for `metainfo`, it generally stores metadata about images and is not usually modified. If there is a need to modify `metainfo`, users should use the `set_metainfo` interface to make explicit modifications.
|
|
|
|
For convenience in operations, `data` and `metainfo` can be directly deleted using del. Additionally, the pop method is supported to delete attributes after accessing them.
|
|
|
|
```python
|
|
data_element = BaseDataElement(
|
|
bboxes=torch.rand((6, 4)), scores=torch.rand((6,)),
|
|
metainfo=dict(img_id=0, img_shape=(640, 640))
|
|
)
|
|
for k, v in data_element.all_items():
|
|
print(f'{k}: {v}')
|
|
```
|
|
|
|
```
|
|
img_id: 0
|
|
img_shape: (640, 640)
|
|
scores: tensor([0.8445, 0.6678, 0.8172, 0.9125, 0.7186, 0.5462])
|
|
bboxes: tensor([[0.5773, 0.0289, 0.4793, 0.7573],
|
|
[0.8187, 0.8176, 0.3455, 0.3368],
|
|
[0.6947, 0.5592, 0.7285, 0.0281],
|
|
[0.7710, 0.9867, 0.7172, 0.5815],
|
|
[0.3999, 0.9192, 0.7817, 0.2535],
|
|
[0.2433, 0.0132, 0.1757, 0.6196]])
|
|
```
|
|
|
|
```python
|
|
# modify data attributes
|
|
data_element.bboxes = data_element.bboxes * 2
|
|
data_element.scores = data_element.scores * -1
|
|
for k, v in data_element.items():
|
|
print(f'{k}: {v}')
|
|
|
|
# delete data attributes
|
|
del data_element.bboxes
|
|
for k, v in data_element.items():
|
|
print(f'{k}: {v}')
|
|
|
|
data_element.pop('scores', None)
|
|
print('The keys in data is: ', data_element.keys())
|
|
```
|
|
|
|
```
|
|
scores: tensor([-0.8445, -0.6678, -0.8172, -0.9125, -0.7186, -0.5462])
|
|
bboxes: tensor([[1.1546, 0.0578, 0.9586, 1.5146],
|
|
[1.6374, 1.6352, 0.6911, 0.6735],
|
|
[1.3893, 1.1185, 1.4569, 0.0562],
|
|
[1.5420, 1.9734, 1.4344, 1.1630],
|
|
[0.7999, 1.8384, 1.5635, 0.5070],
|
|
[0.4867, 0.0264, 0.3514, 1.2392]])
|
|
scores: tensor([-0.8445, -0.6678, -0.8172, -0.9125, -0.7186, -0.5462])
|
|
The keys in data is []
|
|
```
|
|
|
|
```python
|
|
# modify metainfo
|
|
data_element.set_metainfo(dict(img_shape = (1280, 1280), img_id=10))
|
|
print(data_element.img_shape) # (1280, 1280)
|
|
for k, v in data_element.metainfo_items():
|
|
print(f'{k}: {v}')
|
|
|
|
# use pop access and delete
|
|
del data_element.img_shape
|
|
for k, v in data_element.metainfo_items():
|
|
print(f'{k}: {v}')
|
|
|
|
data_element.pop('img_id')
|
|
print('The keys in metainfo is ', data_element.metainfo_keys())
|
|
```
|
|
|
|
```
|
|
(1280, 1280)
|
|
img_id: 10
|
|
img_shape: (1280, 1280)
|
|
img_id: 10
|
|
The keys in metainfo is []
|
|
```
|
|
|
|
### 5. Tensor-like operations
|
|
|
|
Users can transform the data status in `BaseDataElement` like the operations in tensor.Tensor. Currently, we support `cuda`, `cpu`, `to`, and `numpy`, etc. `to` has the same interface as `torch.Tensor.to()`, which allows users to change the status of the encapsulted tensor freely.
|
|
|
|
**Note:** These interfaces only handle sequences types in `np.array`, `torch.Tensor`, and numbers. Data in other types will be skipped, such as strings.
|
|
|
|
```python
|
|
data_element = BaseDataElement(
|
|
bboxes=torch.rand((6, 4)), scores=torch.rand((6,)),
|
|
metainfo=dict(img_id=0, img_shape=(640, 640))
|
|
)
|
|
# copy data to GPU
|
|
cuda_element_1 = data_element.cuda()
|
|
print('cuda_element_1 is on the device of', cuda_element_1.bboxes.device) # cuda:0
|
|
cuda_element_2 = data_element.to('cuda:0')
|
|
print('cuda_element_1 is on the device of', cuda_element_2.bboxes.device) # cuda:0
|
|
|
|
# copy data to cpu
|
|
cpu_element_1 = cuda_element_1.cpu()
|
|
print('cpu_element_1 is on the device of', cpu_element_1.bboxes.device) # cpu
|
|
cpu_element_2 = cuda_element_2.to('cpu')
|
|
print('cpu_element_2 is on the device of', cpu_element_2.bboxes.device) # cpu
|
|
|
|
# convert data to FP16
|
|
fp16_instances = cuda_element_1.to(
|
|
device=None, dtype=torch.float16, non_blocking=False, copy=False,
|
|
memory_format=torch.preserve_format)
|
|
print('The type of bboxes in fp16_instances is', fp16_instances.bboxes.dtype) # torch.float16
|
|
|
|
# detach all data gradients
|
|
cuda_element_3 = cuda_element_2.detach()
|
|
print('The data in cuda_element_3 requires grad: ', cuda_element_3.bboxes.requires_grad)
|
|
# transform data to numpy array
|
|
np_instances = cpu_element_1.numpy()
|
|
print('The type of cpu_element_1 is convert to', type(np_instances.bboxes))
|
|
```
|
|
|
|
```
|
|
cuda_element_1 is on the device of cuda:0
|
|
cuda_element_1 is on the device of cuda:0
|
|
cpu_element_1 is on the device of cpu
|
|
cpu_element_2 is on the device of cpu
|
|
The type of bboxes in fp16_instances is torch.float16
|
|
The data in cuda_element_3 requires grad: False
|
|
The type of cpu_element_1 is convert to <class 'numpy.ndarray'>
|
|
```
|
|
|
|
### 6. Show properties
|
|
|
|
`BaseDataElement` also implements `__repr__` which allows users to get all the data information through `print`. Meanwhile, to facilitate debugging, all attributes in `BaseDataElement` are added to `__dict__`. Users can visualize the contents directly in their IDEs. A complete property display is as follows:
|
|
|
|
```python
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = BaseDataElement(metainfo=img_meta)
|
|
instance_data.det_labels = torch.LongTensor([0, 1, 2, 3])
|
|
instance_data.det_scores = torch.Tensor([0.01, 0.1, 0.2, 0.3])
|
|
print(instance_data)
|
|
```
|
|
|
|
```
|
|
<BaseDataElement(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([0, 1, 2, 3])
|
|
det_scores: tensor([0.0100, 0.1000, 0.2000, 0.3000])
|
|
) at 0x7f9f339f85b0>
|
|
```
|
|
|
|
## xxxData
|
|
|
|
MMEngine categorizes the data elements into three categories:
|
|
|
|
- InstanceData: mainly for high-level tasks that encapsulated all instance-related data in the image, such as bounding boxes, labels, instance masks, key points, polygons, tracking ids, etc. All instance-related data has the same **length**, which is the number of instances in the image.
|
|
- PixelData: mainly for low-level tasks and some high-level tasks that require pixel-level labels. It encapsulates pixel-level data such as segmentation map for semantic segmentations, flow map for optical flow tasks, panoptic segmentation map for panoramic segmentations, and various images generated by bottom-level tasks like super-resolution maps, denoising maps, and other various style maps generated. These data typically have three or four dimensions, with the last two dimensions representing the height and width of the data, which are consistent across the dataset.
|
|
- LabelData: mainly for encapsulating label-level data, such as class labels in image classification or multi-class classification, content categories for generated images in image generation, text in text recognition tasks, and more.
|
|
|
|
### InstanceData
|
|
|
|
[`InstanceData`](mmengine.structures.InstanceData) builds upon `BaseDataElement` and introduces restrictions on the data stored in `data`, requiring that the length of the data is consistent. For example, in object detection, assuming an image has N objects (instances), you can store all the bounding boxes and labels in InstanceData, where the lengths of bounding boxes and label in InstanceData are the same. Based on this assumption, InstanceData is extended to include the following features:
|
|
|
|
- length validation of the data stored in InstanceData's data.
|
|
- support for dictionary-like access and assignment of attributes in the `data`.
|
|
- support for basic indexing, slicing, and advanced indexing capabilities.
|
|
- support for concatenation of InstanceData with the same keys but different instances.
|
|
|
|
These extended features support basic data structures such as `torch.tensor`, `numpy.ndarray`, list, str, and tuple, as well as custom data structures, as long as the custom data structure implements `__len__`, `__getitem__`, and `cat` methods.
|
|
|
|
#### Data verification
|
|
|
|
All data stored in `InstanceData` must have the same length.
|
|
|
|
```python
|
|
from mmengine.structures import InstanceData
|
|
import torch
|
|
import numpy as np
|
|
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = InstanceData(metainfo=img_meta)
|
|
instance_data.det_labels = torch.LongTensor([2, 3])
|
|
instance_data.det_scores = torch.Tensor([0.8, 0.7])
|
|
instance_data.bboxes = torch.rand((2, 4))
|
|
print('The length of instance_data is', len(instance_data)) # 2
|
|
|
|
instance_data.bboxes = torch.rand((3, 4))
|
|
```
|
|
|
|
```
|
|
The length of instance_data is 2
|
|
AssertionError: the length of values 3 is not consistent with the length of this :obj:`InstanceData` 2
|
|
```
|
|
|
|
#### Dictionary-like operations for accessing and setting attributes
|
|
|
|
`InstanceData` supports dictionary-like operations on **data** attributes.
|
|
|
|
```python
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = InstanceData(metainfo=img_meta)
|
|
instance_data["det_labels"] = torch.LongTensor([2, 3])
|
|
instance_data["det_scores"] = torch.Tensor([0.8, 0.7])
|
|
instance_data.bboxes = torch.rand((2, 4))
|
|
print(instance_data)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2, 3])
|
|
det_scores: tensor([0.8000, 0.7000])
|
|
bboxes: tensor([[0.6576, 0.5435, 0.5253, 0.8273],
|
|
[0.4533, 0.6848, 0.7230, 0.9279]])
|
|
) at 0x7f9f339f8ca0>
|
|
```
|
|
|
|
#### Indexing and slicing
|
|
|
|
`InstanceData` supports the list indexing and slicing operations similar to Python, meanwhile, it also supports advanced indexing operations like numpy.
|
|
|
|
```python
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = InstanceData(metainfo=img_meta)
|
|
instance_data.det_labels = torch.LongTensor([2, 3])
|
|
instance_data.det_scores = torch.Tensor([0.8, 0.7])
|
|
instance_data.bboxes = torch.rand((2, 4))
|
|
print(instance_data)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2, 3])
|
|
det_scores: tensor([0.8000, 0.7000])
|
|
bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777],
|
|
[0.3421, 0.7104, 0.6000, 0.1518]])
|
|
) at 0x7f9f312b4dc0>
|
|
```
|
|
|
|
1. Indexing
|
|
|
|
```python
|
|
print(instance_data[1])
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([3])
|
|
det_scores: tensor([0.7000])
|
|
bboxes: tensor([[0.3421, 0.7104, 0.6000, 0.1518]])
|
|
) at 0x7f9f312b4610>
|
|
```
|
|
|
|
2. Slicing
|
|
|
|
```python
|
|
print(instance_data[0:1])
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2])
|
|
det_scores: tensor([0.8000])
|
|
bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777]])
|
|
) at 0x7f9f312b4e20>
|
|
```
|
|
|
|
3. Advanced indexing
|
|
|
|
- list indexing
|
|
|
|
```python
|
|
sorted_results = instance_data[instance_data.det_scores.sort().indices]
|
|
print(sorted_results)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([3, 2])
|
|
det_scores: tensor([0.7000, 0.8000])
|
|
bboxes: tensor([[0.3421, 0.7104, 0.6000, 0.1518],
|
|
[0.1872, 0.1669, 0.7563, 0.8777]])
|
|
) at 0x7f9f312b4a90>
|
|
```
|
|
|
|
- bool indexing
|
|
|
|
```python
|
|
filter_results = instance_data[instance_data.det_scores > 0.75]
|
|
print(filter_results)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2])
|
|
det_scores: tensor([0.8000])
|
|
bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777]])
|
|
) at 0x7fa061299dc0>
|
|
```
|
|
|
|
4. result is empty
|
|
|
|
```python
|
|
empty_results = instance_data[instance_data.det_scores > 1]
|
|
print(empty_results)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([], dtype=torch.int64)
|
|
det_scores: tensor([])
|
|
bboxes: tensor([], size=(0, 4))
|
|
) at 0x7f9f439cccd0>
|
|
```
|
|
|
|
#### Concatenate data
|
|
|
|
Users can concatenate two `InstanceData` with the same key into one new `InstanceData`. For two different `InstanceData` with different length as N and M, the length of the output `InstanceData` is N + M.
|
|
|
|
```python
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = InstanceData(metainfo=img_meta)
|
|
instance_data.det_labels = torch.LongTensor([2, 3])
|
|
instance_data.det_scores = torch.Tensor([0.8, 0.7])
|
|
instance_data.bboxes = torch.rand((2, 4))
|
|
print('The length of instance_data is', len(instance_data))
|
|
cat_results = InstanceData.cat([instance_data, instance_data])
|
|
print('The length of instance_data is', len(cat_results))
|
|
print(cat_results)
|
|
```
|
|
|
|
```
|
|
The length of instance_data is 2
|
|
The length of instance_data is 4
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2, 3, 2, 3])
|
|
det_scores: tensor([0.8000, 0.7000, 0.8000, 0.7000])
|
|
bboxes: tensor([[0.5341, 0.8962, 0.9043, 0.2824],
|
|
[0.3864, 0.2215, 0.7610, 0.7060],
|
|
[0.5341, 0.8962, 0.9043, 0.2824],
|
|
[0.3864, 0.2215, 0.7610, 0.7060]])
|
|
) at 0x7fa061d4a9d0>
|
|
```
|
|
|
|
#### Customize data structures
|
|
|
|
Users need to implement `__len__`, `__getitem__`, and `cat` in their customized data structures to achieve the above functions.
|
|
|
|
```python
|
|
import itertools
|
|
|
|
class TmpObject:
|
|
def __init__(self, tmp) -> None:
|
|
assert isinstance(tmp, list)
|
|
self.tmp = tmp
|
|
|
|
def __len__(self):
|
|
return len(self.tmp)
|
|
|
|
def __getitem__(self, item):
|
|
if type(item) == int:
|
|
if item >= len(self) or item < -len(self): # type:ignore
|
|
raise IndexError(f'Index {item} out of range!')
|
|
else:
|
|
# keep the dimension
|
|
item = slice(item, None, len(self))
|
|
return TmpObject(self.tmp[item])
|
|
|
|
@staticmethod
|
|
def cat(tmp_objs):
|
|
assert all(isinstance(results, TmpObject) for results in tmp_objs)
|
|
if len(tmp_objs) == 1:
|
|
return tmp_objs[0]
|
|
tmp_list = [tmp_obj.tmp for tmp_obj in tmp_objs]
|
|
tmp_list = list(itertools.chain(*tmp_list))
|
|
new_data = TmpObject(tmp_list)
|
|
return new_data
|
|
|
|
def __repr__(self):
|
|
return str(self.tmp)
|
|
```
|
|
|
|
```python
|
|
img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
|
|
instance_data = InstanceData(metainfo=img_meta)
|
|
instance_data.det_labels = torch.LongTensor([2, 3])
|
|
instance_data["det_scores"] = torch.Tensor([0.8, 0.7])
|
|
instance_data.bboxes = torch.rand((2, 4))
|
|
instance_data.polygons = TmpObject([[1, 2, 3, 4], [5, 6, 7, 8]])
|
|
print(instance_data)
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
det_labels: tensor([2, 3])
|
|
polygons: [[1, 2, 3, 4], [5, 6, 7, 8]]
|
|
det_scores: tensor([0.8000, 0.7000])
|
|
bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967],
|
|
[0.4679, 0.7934, 0.5372, 0.4655]])
|
|
) at 0x7fa061b5d2b0>
|
|
```
|
|
|
|
```python
|
|
# advanced indexing
|
|
print(instance_data[instance_data.det_scores > 0.75])
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967]])
|
|
det_labels: tensor([2])
|
|
det_scores: tensor([0.8000])
|
|
polygons: [[1, 2, 3, 4]]
|
|
) at 0x7f9f312716d0>
|
|
```
|
|
|
|
```python
|
|
# cat
|
|
print(InstanceData.cat([instance_data, instance_data]))
|
|
```
|
|
|
|
```
|
|
<InstanceData(
|
|
|
|
META INFORMATION
|
|
pad_shape: (800, 1216, 3)
|
|
img_shape: (800, 1196, 3)
|
|
|
|
DATA FIELDS
|
|
bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967],
|
|
[0.4679, 0.7934, 0.5372, 0.4655],
|
|
[0.4207, 0.0778, 0.9959, 0.1967],
|
|
[0.4679, 0.7934, 0.5372, 0.4655]])
|
|
det_labels: tensor([2, 3, 2, 3])
|
|
det_scores: tensor([0.8000, 0.7000, 0.8000, 0.7000])
|
|
polygons: [[1, 2, 3, 4], [5, 6, 7, 8], [1, 2, 3, 4], [5, 6, 7, 8]]
|
|
) at 0x7f9f31271490>
|
|
```
|
|
|
|
### PixelData
|
|
|
|
[`PixelData`](mmengine.structures.PixelData) upon `BaseDataElement` and imposes restrictions on the stored `data`:
|
|
|
|
- All data must be three-dimension in the order of (Channel, Height, and Width).
|
|
- All data must have the same length and width.
|
|
|
|
MMEngine extends the `PixelData` according to these assumptions, including:
|
|
|
|
- Dimension validation on data stored
|
|
- Support indexing and slicing the data in spatial dimension
|
|
|
|
#### Data verification
|
|
|
|
`PixelData` checks the length and dimensions of all the data passed to it.
|
|
|
|
```python
|
|
from mmengine.structures import PixelData
|
|
import random
|
|
import torch
|
|
import numpy as np
|
|
metainfo = dict(
|
|
img_id=random.randint(0, 100),
|
|
img_shape=(random.randint(400, 600), random.randint(400, 600)))
|
|
image = np.random.randint(0, 255, (4, 20, 40))
|
|
featmap = torch.randint(0, 255, (10, 20, 40))
|
|
pixel_data = PixelData(metainfo=metainfo,
|
|
image=image,
|
|
featmap=featmap)
|
|
print('The shape of pixel_data is', pixel_data.shape)
|
|
# set
|
|
pixel_data.map3 = torch.randint(0, 255, (20, 40))
|
|
print('The shape of pixel_data is', pixel_data.map3.shape)
|
|
```
|
|
|
|
```
|
|
The shape of pixel_data is (20, 40)
|
|
The shape of pixel_data is torch.Size([1, 20, 40])
|
|
```
|
|
|
|
```python
|
|
pixel_data.map2 = torch.randint(0, 255, (3, 20, 30))
|
|
# AssertionError: the height and width of values (20, 30) is not consistent with the length of this :obj:`PixelData` (20, 40)
|
|
```
|
|
|
|
```
|
|
AssertionError: the height and width of values (20, 30) is not consistent with the length of this :obj:`PixelData` (20, 40)
|
|
```
|
|
|
|
```python
|
|
pixel_data.map2 = torch.randint(0, 255, (1, 3, 20, 40))
|
|
# AssertionError: The dim of value must be 2 or 3, but got 4
|
|
```
|
|
|
|
```
|
|
AssertionError: The dim of value must be 2 or 3, but got 4
|
|
```
|
|
|
|
#### Querying in spatial dimension
|
|
|
|
`PixelData` supports indexing and slicing in spatial dimension on part of the data instances. Users only need to pass in the index of the length and width.
|
|
|
|
```python
|
|
metainfo = dict(
|
|
img_id=random.randint(0, 100),
|
|
img_shape=(random.randint(400, 600), random.randint(400, 600)))
|
|
image = np.random.randint(0, 255, (4, 20, 40))
|
|
featmap = torch.randint(0, 255, (10, 20, 40))
|
|
pixel_data = PixelData(metainfo=metainfo,
|
|
image=image,
|
|
featmap=featmap)
|
|
print('The shape of pixel_data is: ', pixel_data.shape)
|
|
```
|
|
|
|
```
|
|
The shape of pixel_data is (20, 40)
|
|
```
|
|
|
|
- Indexing
|
|
|
|
```python
|
|
index_data = pixel_data[10, 20]
|
|
print('The shape of index_data is: ', index_data.shape)
|
|
```
|
|
|
|
```
|
|
The shape of index_data is (1, 1)
|
|
```
|
|
|
|
- Slicing
|
|
|
|
```python
|
|
slice_data = pixel_data[10:20, 20:40]
|
|
print('The shape of slice_data is: ', slice_data.shape)
|
|
```
|
|
|
|
```
|
|
The shape of slice_data is (10, 20)
|
|
```
|
|
|
|
### LabelData
|
|
|
|
[`LabelData`](mmengine.structures.LabelData) is mainly used to encapsulate label data such as classiciation labels, predicted text labels, etc. `LabelData` has no limitations to `data`, and it provides two extra features: `onehot` transformation and `index` transformation.
|
|
|
|
```python
|
|
from mmengine.structures import LabelData
|
|
import torch
|
|
|
|
item = torch.tensor([1], dtype=torch.int64)
|
|
num_classes = 10
|
|
|
|
```
|
|
|
|
```python
|
|
onehot = LabelData.label_to_onehot(label=item, num_classes=num_classes)
|
|
print(f'{num_classes} is convert to ', onehot)
|
|
|
|
index = LabelData.onehot_to_label(onehot=onehot)
|
|
print(f'{onehot} is convert to ', index)
|
|
```
|
|
|
|
```
|
|
10 is convert to tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
|
|
tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) is convert to tensor([1])
|
|
```
|
|
|
|
## xxxDataSample
|
|
|
|
There may be different types of labels in one sample, for example, there may be both instance-level labels (Box) and pixel-level labels (SegMap) in one image. Therefore, we need to have a higher-level encapsulation on top of PixelData, InstanceData, and PixelData to represent the image-level labels. This layer is named `XXXDataSample` across the OpenMMLab series algorithms. In MMDet we have `DetDataSample`. All the labels are encapsulated in `XXXDataSample` during the training process, so different deep learning tasks can maintain a uniform data flow and data processing method.
|
|
|
|
### Downstream library usage
|
|
|
|
We take MMDet as an example to illustrate the use of the `DataSample` in downstream libraries and its constraints and naming styles. MMDet defined `DetDataSample` and seven fields, which are:
|
|
|
|
- Annotation Information
|
|
- gt_instance (InstanceData): Instance annotation information includes the instance class, bounding box, etc. The type constraint is `InstanceData`.
|
|
- gt_panoptic_seg (PixelData): For panoptic segmentation annotation information, the required type is PixelData.
|
|
- gt_semantic_seg (PixelData): Semantic segmentation annotation information. The type constraint is `PixelData`.
|
|
- Prediction Results
|
|
- pred_instance (InstanceData): Instance prediction results include the instance class, bounding boxes, etc. The type constraint is `InstanceData`.
|
|
- pred_panoptic_seg (PixelData): Panoptic segmentation prediction results. The type constraint is `PixelData`.
|
|
- pred_semantic_seg (PixelData): Semantic segmentation prediction results. The type constraint is `PixelData`.
|
|
- Intermediate Results
|
|
- proposal (InstanceData): Mostly used for the RPN results in the two-stage algorithms. The type constraint is `InstanceData`.
|
|
|
|
```python
|
|
from mmengine.structures import BaseDataElement
|
|
import torch
|
|
|
|
class DetDataSample(BaseDataElement):
|
|
|
|
# annotation
|
|
@property
|
|
def gt_instances(self) -> InstanceData:
|
|
return self._gt_instances
|
|
|
|
@gt_instances.setter
|
|
def gt_instances(self, value: InstanceData):
|
|
self.set_field(value, '_gt_instances', dtype=InstanceData)
|
|
|
|
@gt_instances.deleter
|
|
def gt_instances(self):
|
|
del self._gt_instances
|
|
|
|
@property
|
|
def gt_panoptic_seg(self) -> PixelData:
|
|
return self._gt_panoptic_seg
|
|
|
|
@gt_panoptic_seg.setter
|
|
def gt_panoptic_seg(self, value: PixelData):
|
|
self.set_field(value, '_gt_panoptic_seg', dtype=PixelData)
|
|
|
|
@gt_panoptic_seg.deleter
|
|
def gt_panoptic_seg(self):
|
|
del self._gt_panoptic_seg
|
|
|
|
@property
|
|
def gt_sem_seg(self) -> PixelData:
|
|
return self._gt_sem_seg
|
|
|
|
@gt_sem_seg.setter
|
|
def gt_sem_seg(self, value: PixelData):
|
|
self.set_field(value, '_gt_sem_seg', dtype=PixelData)
|
|
|
|
@gt_sem_seg.deleter
|
|
def gt_sem_seg(self):
|
|
del self._gt_sem_seg
|
|
|
|
# prediction
|
|
@property
|
|
def pred_instances(self) -> InstanceData:
|
|
return self._pred_instances
|
|
|
|
@pred_instances.setter
|
|
def pred_instances(self, value: InstanceData):
|
|
self.set_field(value, '_pred_instances', dtype=InstanceData)
|
|
|
|
@pred_instances.deleter
|
|
def pred_instances(self):
|
|
del self._pred_instances
|
|
|
|
@property
|
|
def pred_panoptic_seg(self) -> PixelData:
|
|
return self._pred_panoptic_seg
|
|
|
|
@pred_panoptic_seg.setter
|
|
def pred_panoptic_seg(self, value: PixelData):
|
|
self.set_field(value, '_pred_panoptic_seg', dtype=PixelData)
|
|
|
|
@pred_panoptic_seg.deleter
|
|
def pred_panoptic_seg(self):
|
|
del self._pred_panoptic_seg
|
|
|
|
# intermediate result
|
|
@property
|
|
def pred_sem_seg(self) -> PixelData:
|
|
return self._pred_sem_seg
|
|
|
|
@pred_sem_seg.setter
|
|
def pred_sem_seg(self, value: PixelData):
|
|
self.set_field(value, '_pred_sem_seg', dtype=PixelData)
|
|
|
|
@pred_sem_seg.deleter
|
|
def pred_sem_seg(self):
|
|
del self._pred_sem_seg
|
|
|
|
@property
|
|
def proposals(self) -> InstanceData:
|
|
return self._proposals
|
|
|
|
@proposals.setter
|
|
def proposals(self, value: InstanceData):
|
|
self.set_field(value, '_proposals', dtype=InstanceData)
|
|
|
|
@proposals.deleter
|
|
def proposals(self):
|
|
del self._proposals
|
|
|
|
```
|
|
|
|
### Type constraint
|
|
|
|
`DetDataSample` is used in the following way. It will throw an error when the data type is invalid, for example, using `torch.Tensor` to define `proposals` instead of `InstanceData`.
|
|
|
|
```python
|
|
data_sample = DetDataSample()
|
|
|
|
data_sample.proposals = InstanceData(data=dict(bboxes=torch.rand((5,4))))
|
|
print(data_sample)
|
|
```
|
|
|
|
```
|
|
<DetDataSample(
|
|
|
|
META INFORMATION
|
|
|
|
DATA FIELDS
|
|
proposals: <InstanceData(
|
|
|
|
META INFORMATION
|
|
|
|
DATA FIELDS
|
|
data:
|
|
bboxes: tensor([[0.7513, 0.9275, 0.6169, 0.5581],
|
|
[0.6019, 0.6861, 0.7915, 0.0221],
|
|
[0.5977, 0.8987, 0.9541, 0.7877],
|
|
[0.0309, 0.1680, 0.1374, 0.0556],
|
|
[0.3842, 0.9965, 0.0747, 0.6546]])
|
|
) at 0x7f9f1c090310>
|
|
) at 0x7f9f1c090430>
|
|
```
|
|
|
|
```python
|
|
data_sample.proposals = torch.rand((5, 4))
|
|
```
|
|
|
|
```
|
|
AssertionError: tensor([[0.4370, 0.1661, 0.0902, 0.8421],
|
|
[0.4947, 0.1668, 0.0083, 0.1111],
|
|
[0.2041, 0.8663, 0.0563, 0.3279],
|
|
[0.7817, 0.1938, 0.2499, 0.6748],
|
|
[0.4524, 0.8265, 0.4262, 0.2215]]) should be a <class 'mmengine.data.instance_data.InstanceData'> but got <class 'torch.Tensor'>
|
|
```
|
|
|
|
## Simpify the interfaces
|
|
|
|
In this section, we use MMDetection to demonstrate how to migrate the abstract data interfaces to simplify the module and component interfaces. We suppose both `DetDataSample` and `InstanceData` have been implemented in MMDetection and MMEngine.
|
|
|
|
### 1. Simplify the module interface
|
|
|
|
Detector's external interfaces can be significantly simplified and unified. In the training process of a single-stage detection and segmentation algorithm in MMDet 2.X, `SingleStageDetector` requires `img`, `img_metas`, `gt_bboxes`, `gt_labels` and `gt_bboxes_ignore` as the inputs, but `SingleStageInstanceSegmentor` requires `gt_masks` as well. This causes inconsistency in the training interface and affects flexibility.
|
|
|
|
```python
|
|
class SingleStageDetector(BaseDetector):
|
|
...
|
|
|
|
def forward_train(self,
|
|
img,
|
|
img_metas,
|
|
gt_bboxes,
|
|
gt_labels,
|
|
gt_bboxes_ignore=None):
|
|
|
|
|
|
class SingleStageInstanceSegmentor(BaseDetector):
|
|
...
|
|
|
|
def forward_train(self,
|
|
img,
|
|
img_metas,
|
|
gt_masks,
|
|
gt_labels,
|
|
gt_bboxes=None,
|
|
gt_bboxes_ignore=None,
|
|
**kwargs):
|
|
```
|
|
|
|
In MMDet 3.X, the training interfaces of all the detectors can be unified as `img` and `data_samples` using `DetDataSample`. Different modules can use `data_samples` to encapsulate their own attributes.
|
|
|
|
```python
|
|
class SingleStageDetector(BaseDetector):
|
|
...
|
|
|
|
def forward_train(self,
|
|
img,
|
|
data_samples):
|
|
|
|
class SingleStageInstanceSegmentor(BaseDetector):
|
|
...
|
|
|
|
def forward_train(self,
|
|
img,
|
|
data_samples):
|
|
|
|
```
|
|
|
|
### 2. Simplify the model interfaces
|
|
|
|
In MMDet 2.X, `HungarianAssigner` and `MaskHungarianAssigner` will be used to assign bboxes and instance segment information with annotated instances, respectively. The assignment logics of these two modules are the same, and the only differences are the interface and the calculation of the loss functions. However, this difference makes the code of `HungarianAssigner` cannot be directly used in `MaskHungarianAssigner`, which caused the redundancy.
|
|
|
|
```python
|
|
class HungarianAssigner(BaseAssigner):
|
|
|
|
def assign(self,
|
|
bbox_pred,
|
|
cls_pred,
|
|
gt_bboxes,
|
|
gt_labels,
|
|
img_meta,
|
|
gt_bboxes_ignore=None,
|
|
eps=1e-7):
|
|
|
|
class MaskHungarianAssigner(BaseAssigner):
|
|
|
|
def assign(self,
|
|
cls_pred,
|
|
mask_pred,
|
|
gt_labels,
|
|
gt_mask,
|
|
img_meta,
|
|
gt_bboxes_ignore=None,
|
|
eps=1e-7):
|
|
```
|
|
|
|
In MMDet 3.X, `InstanceData` can encapsulate the bounding boxes, scores, and masks. With this, we can simplify the core parameters of `HungarianAssigner` to `pred_instances`, `gt_instances`, and `gt_instances_ignore`. This unifies the two assigners into one `HungarianAssianger`.
|
|
|
|
```python
|
|
class HungarianAssigner(BaseAssigner):
|
|
|
|
def assign(self,
|
|
pred_instances,
|
|
gt_instancess,
|
|
gt_instances_ignore=None,
|
|
eps=1e-7):
|
|
```
|