mirror of https://github.com/n-hys/msun.git
63 lines
1.9 KiB
C
63 lines
1.9 KiB
C
/* From: @(#)k_sin.c 1.3 95/01/18 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* ld80 version of k_sin.c. See ../src/k_sin.c for most comments.
|
|
*/
|
|
|
|
#include "math_private.h"
|
|
|
|
static const double
|
|
half = 0.5;
|
|
|
|
/*
|
|
* Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
|
|
* |sin(x)/x - s(x)| < 2**-72.1
|
|
*
|
|
* See ../ld80/k_cosl.c for more details about the polynomial.
|
|
*/
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
/* Long double constants are slow on these arches, and broken on i386. */
|
|
static const volatile double
|
|
S1hi = -0.16666666666666666, /* -0x15555555555555.0p-55 */
|
|
S1lo = -9.2563760475949941e-18; /* -0x15580000000000.0p-109 */
|
|
#define S1 ((long double)S1hi + S1lo)
|
|
#else
|
|
static const long double
|
|
S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
|
|
#endif
|
|
|
|
static const double
|
|
S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
|
|
S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
|
|
S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
|
|
S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
|
|
S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
|
|
S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
|
|
S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
|
|
|
|
long double
|
|
__kernel_sinl(long double x, long double y, int iy)
|
|
{
|
|
long double z,r,v;
|
|
|
|
z = x*x;
|
|
v = z*x;
|
|
r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8)))));
|
|
if(iy==0) return x+v*(S1+z*r);
|
|
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
}
|