mirror of https://github.com/n-hys/bash.git
1237 lines
27 KiB
C
1237 lines
27 KiB
C
/*
|
|
* array.c - functions to create, destroy, access, and manipulate arrays
|
|
* of strings.
|
|
*
|
|
* Arrays are sparse doubly-linked lists. An element's index is stored
|
|
* with it.
|
|
*
|
|
* Chet Ramey
|
|
* chet@ins.cwru.edu
|
|
*/
|
|
|
|
/* Copyright (C) 1997-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Bash, the Bourne Again SHell.
|
|
|
|
Bash is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Bash is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Bash. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#if defined (ARRAY_VARS)
|
|
|
|
#if defined (HAVE_UNISTD_H)
|
|
# ifdef _MINIX
|
|
# include <sys/types.h>
|
|
# endif
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include "bashansi.h"
|
|
|
|
#include "shell.h"
|
|
#include "array.h"
|
|
#include "builtins/common.h"
|
|
|
|
#define ADD_BEFORE(ae, new) \
|
|
do { \
|
|
ae->prev->next = new; \
|
|
new->prev = ae->prev; \
|
|
ae->prev = new; \
|
|
new->next = ae; \
|
|
} while(0)
|
|
|
|
#define ADD_AFTER(ae, new) \
|
|
do { \
|
|
ae->next->prev = new; \
|
|
new->next = ae->next; \
|
|
new->prev = ae; \
|
|
ae->next = new; \
|
|
} while (0)
|
|
|
|
static char *array_to_string_internal PARAMS((ARRAY_ELEMENT *, ARRAY_ELEMENT *, char *, int));
|
|
|
|
static char *spacesep = " ";
|
|
|
|
#define IS_LASTREF(a) (a->lastref)
|
|
|
|
#define LASTREF_START(a, i) \
|
|
(IS_LASTREF(a) && i >= element_index(a->lastref)) ? a->lastref \
|
|
: element_forw(a->head)
|
|
|
|
#define LASTREF(a) (a->lastref ? a->lastref : element_forw(a->head))
|
|
|
|
#define INVALIDATE_LASTREF(a) a->lastref = 0
|
|
#define SET_LASTREF(a, e) a->lastref = (e)
|
|
#define UNSET_LASTREF(a) a->lastref = 0;
|
|
|
|
ARRAY *
|
|
array_create()
|
|
{
|
|
ARRAY *r;
|
|
ARRAY_ELEMENT *head;
|
|
|
|
r = (ARRAY *)xmalloc(sizeof(ARRAY));
|
|
r->type = array_indexed;
|
|
r->max_index = -1;
|
|
r->num_elements = 0;
|
|
r->lastref = (ARRAY_ELEMENT *)0;
|
|
head = array_create_element(-1, (char *)NULL); /* dummy head */
|
|
head->prev = head->next = head;
|
|
r->head = head;
|
|
return(r);
|
|
}
|
|
|
|
void
|
|
array_flush (a)
|
|
ARRAY *a;
|
|
{
|
|
register ARRAY_ELEMENT *r, *r1;
|
|
|
|
if (a == 0)
|
|
return;
|
|
for (r = element_forw(a->head); r != a->head; ) {
|
|
r1 = element_forw(r);
|
|
array_dispose_element(r);
|
|
r = r1;
|
|
}
|
|
a->head->next = a->head->prev = a->head;
|
|
a->max_index = -1;
|
|
a->num_elements = 0;
|
|
INVALIDATE_LASTREF(a);
|
|
}
|
|
|
|
void
|
|
array_dispose(a)
|
|
ARRAY *a;
|
|
{
|
|
if (a == 0)
|
|
return;
|
|
array_flush (a);
|
|
array_dispose_element(a->head);
|
|
free(a);
|
|
}
|
|
|
|
ARRAY *
|
|
array_copy(a)
|
|
ARRAY *a;
|
|
{
|
|
ARRAY *a1;
|
|
ARRAY_ELEMENT *ae, *new;
|
|
|
|
if (a == 0)
|
|
return((ARRAY *) NULL);
|
|
a1 = array_create();
|
|
a1->type = a->type;
|
|
a1->max_index = a->max_index;
|
|
a1->num_elements = a->num_elements;
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
|
|
new = array_create_element(element_index(ae), element_value(ae));
|
|
ADD_BEFORE(a1->head, new);
|
|
if (ae == LASTREF(a))
|
|
SET_LASTREF(a1, new);
|
|
}
|
|
return(a1);
|
|
}
|
|
|
|
/*
|
|
* Make and return a new array composed of the elements in array A from
|
|
* S to E, inclusive.
|
|
*/
|
|
ARRAY *
|
|
array_slice(array, s, e)
|
|
ARRAY *array;
|
|
ARRAY_ELEMENT *s, *e;
|
|
{
|
|
ARRAY *a;
|
|
ARRAY_ELEMENT *p, *n;
|
|
int i;
|
|
arrayind_t mi;
|
|
|
|
a = array_create ();
|
|
a->type = array->type;
|
|
|
|
for (mi = 0, p = s, i = 0; p != e; p = element_forw(p), i++) {
|
|
n = array_create_element (element_index(p), element_value(p));
|
|
ADD_BEFORE(a->head, n);
|
|
mi = element_index(n);
|
|
}
|
|
a->num_elements = i;
|
|
a->max_index = mi;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Walk the array, calling FUNC once for each element, with the array
|
|
* element as the argument.
|
|
*/
|
|
void
|
|
array_walk(a, func, udata)
|
|
ARRAY *a;
|
|
sh_ae_map_func_t *func;
|
|
void *udata;
|
|
{
|
|
register ARRAY_ELEMENT *ae;
|
|
|
|
if (a == 0 || array_empty(a))
|
|
return;
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae))
|
|
if ((*func)(ae, udata) < 0)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Shift the array A N elements to the left. Delete the first N elements
|
|
* and subtract N from the indices of the remaining elements. If FLAGS
|
|
* does not include AS_DISPOSE, this returns a singly-linked null-terminated
|
|
* list of elements so the caller can dispose of the chain. If FLAGS
|
|
* includes AS_DISPOSE, this function disposes of the shifted-out elements
|
|
* and returns NULL.
|
|
*/
|
|
ARRAY_ELEMENT *
|
|
array_shift(a, n, flags)
|
|
ARRAY *a;
|
|
int n, flags;
|
|
{
|
|
register ARRAY_ELEMENT *ae, *ret;
|
|
register int i;
|
|
|
|
if (a == 0 || array_empty(a) || n <= 0)
|
|
return ((ARRAY_ELEMENT *)NULL);
|
|
|
|
INVALIDATE_LASTREF(a);
|
|
for (i = 0, ret = ae = element_forw(a->head); ae != a->head && i < n; ae = element_forw(ae), i++)
|
|
;
|
|
if (ae == a->head) {
|
|
/* Easy case; shifting out all of the elements */
|
|
if (flags & AS_DISPOSE) {
|
|
array_flush (a);
|
|
return ((ARRAY_ELEMENT *)NULL);
|
|
}
|
|
for (ae = ret; element_forw(ae) != a->head; ae = element_forw(ae))
|
|
;
|
|
element_forw(ae) = (ARRAY_ELEMENT *)NULL;
|
|
a->head->next = a->head->prev = a->head;
|
|
a->max_index = -1;
|
|
a->num_elements = 0;
|
|
return ret;
|
|
}
|
|
/*
|
|
* ae now points to the list of elements we want to retain.
|
|
* ret points to the list we want to either destroy or return.
|
|
*/
|
|
ae->prev->next = (ARRAY_ELEMENT *)NULL; /* null-terminate RET */
|
|
|
|
a->head->next = ae; /* slice RET out of the array */
|
|
ae->prev = a->head;
|
|
|
|
for ( ; ae != a->head; ae = element_forw(ae))
|
|
element_index(ae) -= n; /* renumber retained indices */
|
|
|
|
a->num_elements -= n; /* modify bookkeeping information */
|
|
a->max_index = element_index(a->head->prev);
|
|
|
|
if (flags & AS_DISPOSE) {
|
|
for (ae = ret; ae; ) {
|
|
ret = element_forw(ae);
|
|
array_dispose_element(ae);
|
|
ae = ret;
|
|
}
|
|
return ((ARRAY_ELEMENT *)NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Shift array A right N indices. If S is non-null, it becomes the value of
|
|
* the new element 0. Returns the number of elements in the array after the
|
|
* shift.
|
|
*/
|
|
int
|
|
array_rshift (a, n, s)
|
|
ARRAY *a;
|
|
int n;
|
|
char *s;
|
|
{
|
|
register ARRAY_ELEMENT *ae, *new;
|
|
|
|
if (a == 0 || (array_empty(a) && s == 0))
|
|
return 0;
|
|
else if (n <= 0)
|
|
return (a->num_elements);
|
|
|
|
ae = element_forw(a->head);
|
|
if (s) {
|
|
new = array_create_element(0, s);
|
|
ADD_BEFORE(ae, new);
|
|
a->num_elements++;
|
|
if (array_num_elements(a) == 1) { /* array was empty */
|
|
a->max_index = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Renumber all elements in the array except the one we just added.
|
|
*/
|
|
for ( ; ae != a->head; ae = element_forw(ae))
|
|
element_index(ae) += n;
|
|
|
|
a->max_index = element_index(a->head->prev);
|
|
|
|
INVALIDATE_LASTREF(a);
|
|
return (a->num_elements);
|
|
}
|
|
|
|
ARRAY_ELEMENT *
|
|
array_unshift_element(a)
|
|
ARRAY *a;
|
|
{
|
|
return (array_shift (a, 1, 0));
|
|
}
|
|
|
|
int
|
|
array_shift_element(a, v)
|
|
ARRAY *a;
|
|
char *v;
|
|
{
|
|
return (array_rshift (a, 1, v));
|
|
}
|
|
|
|
ARRAY *
|
|
array_quote(array)
|
|
ARRAY *array;
|
|
{
|
|
ARRAY_ELEMENT *a;
|
|
char *t;
|
|
|
|
if (array == 0 || array_head(array) == 0 || array_empty(array))
|
|
return (ARRAY *)NULL;
|
|
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
|
|
t = quote_string (a->value);
|
|
FREE(a->value);
|
|
a->value = t;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
ARRAY *
|
|
array_quote_escapes(array)
|
|
ARRAY *array;
|
|
{
|
|
ARRAY_ELEMENT *a;
|
|
char *t;
|
|
|
|
if (array == 0 || array_head(array) == 0 || array_empty(array))
|
|
return (ARRAY *)NULL;
|
|
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
|
|
t = quote_escapes (a->value);
|
|
FREE(a->value);
|
|
a->value = t;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
ARRAY *
|
|
array_dequote(array)
|
|
ARRAY *array;
|
|
{
|
|
ARRAY_ELEMENT *a;
|
|
char *t;
|
|
|
|
if (array == 0 || array_head(array) == 0 || array_empty(array))
|
|
return (ARRAY *)NULL;
|
|
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
|
|
t = dequote_string (a->value);
|
|
FREE(a->value);
|
|
a->value = t;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
ARRAY *
|
|
array_dequote_escapes(array)
|
|
ARRAY *array;
|
|
{
|
|
ARRAY_ELEMENT *a;
|
|
char *t;
|
|
|
|
if (array == 0 || array_head(array) == 0 || array_empty(array))
|
|
return (ARRAY *)NULL;
|
|
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
|
|
t = dequote_escapes (a->value);
|
|
FREE(a->value);
|
|
a->value = t;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
ARRAY *
|
|
array_remove_quoted_nulls(array)
|
|
ARRAY *array;
|
|
{
|
|
ARRAY_ELEMENT *a;
|
|
|
|
if (array == 0 || array_head(array) == 0 || array_empty(array))
|
|
return (ARRAY *)NULL;
|
|
for (a = element_forw(array->head); a != array->head; a = element_forw(a))
|
|
a->value = remove_quoted_nulls (a->value);
|
|
return array;
|
|
}
|
|
|
|
/*
|
|
* Return a string whose elements are the members of array A beginning at
|
|
* index START and spanning NELEM members. Null elements are counted.
|
|
* Since arrays are sparse, unset array elements are not counted.
|
|
*/
|
|
char *
|
|
array_subrange (a, start, nelem, starsub, quoted, pflags)
|
|
ARRAY *a;
|
|
arrayind_t start, nelem;
|
|
int starsub, quoted, pflags;
|
|
{
|
|
ARRAY *a2;
|
|
ARRAY_ELEMENT *h, *p;
|
|
arrayind_t i;
|
|
char *t;
|
|
WORD_LIST *wl;
|
|
|
|
p = a ? array_head (a) : 0;
|
|
if (p == 0 || array_empty (a) || start > array_max_index(a))
|
|
return ((char *)NULL);
|
|
|
|
/*
|
|
* Find element with index START. If START corresponds to an unset
|
|
* element (arrays can be sparse), use the first element whose index
|
|
* is >= START. If START is < 0, we count START indices back from
|
|
* the end of A (not elements, even with sparse arrays -- START is an
|
|
* index).
|
|
*/
|
|
for (p = element_forw(p); p != array_head(a) && start > element_index(p); p = element_forw(p))
|
|
;
|
|
|
|
if (p == a->head)
|
|
return ((char *)NULL);
|
|
|
|
/* Starting at P, take NELEM elements, inclusive. */
|
|
for (i = 0, h = p; p != a->head && i < nelem; i++, p = element_forw(p))
|
|
;
|
|
|
|
a2 = array_slice(a, h, p);
|
|
|
|
wl = array_to_word_list(a2);
|
|
array_dispose(a2);
|
|
if (wl == 0)
|
|
return (char *)NULL;
|
|
t = string_list_pos_params(starsub ? '*' : '@', wl, quoted, pflags); /* XXX */
|
|
dispose_words(wl);
|
|
|
|
return t;
|
|
}
|
|
|
|
char *
|
|
array_patsub (a, pat, rep, mflags)
|
|
ARRAY *a;
|
|
char *pat, *rep;
|
|
int mflags;
|
|
{
|
|
char *t;
|
|
int pchar, qflags, pflags;
|
|
WORD_LIST *wl, *save;
|
|
|
|
if (a == 0 || array_head(a) == 0 || array_empty(a))
|
|
return ((char *)NULL);
|
|
|
|
wl = array_to_word_list(a);
|
|
if (wl == 0)
|
|
return (char *)NULL;
|
|
|
|
for (save = wl; wl; wl = wl->next) {
|
|
t = pat_subst (wl->word->word, pat, rep, mflags);
|
|
FREE (wl->word->word);
|
|
wl->word->word = t;
|
|
}
|
|
|
|
pchar = (mflags & MATCH_STARSUB) == MATCH_STARSUB ? '*' : '@';
|
|
qflags = (mflags & MATCH_QUOTED) == MATCH_QUOTED ? Q_DOUBLE_QUOTES : 0;
|
|
pflags = (mflags & MATCH_ASSIGNRHS) ? PF_ASSIGNRHS : 0;
|
|
|
|
t = string_list_pos_params (pchar, save, qflags, pflags);
|
|
dispose_words(save);
|
|
|
|
return t;
|
|
}
|
|
|
|
char *
|
|
array_modcase (a, pat, modop, mflags)
|
|
ARRAY *a;
|
|
char *pat;
|
|
int modop;
|
|
int mflags;
|
|
{
|
|
char *t;
|
|
int pchar, qflags, pflags;
|
|
WORD_LIST *wl, *save;
|
|
|
|
if (a == 0 || array_head(a) == 0 || array_empty(a))
|
|
return ((char *)NULL);
|
|
|
|
wl = array_to_word_list(a);
|
|
if (wl == 0)
|
|
return ((char *)NULL);
|
|
|
|
for (save = wl; wl; wl = wl->next) {
|
|
t = sh_modcase(wl->word->word, pat, modop);
|
|
FREE(wl->word->word);
|
|
wl->word->word = t;
|
|
}
|
|
|
|
pchar = (mflags & MATCH_STARSUB) == MATCH_STARSUB ? '*' : '@';
|
|
qflags = (mflags & MATCH_QUOTED) == MATCH_QUOTED ? Q_DOUBLE_QUOTES : 0;
|
|
pflags = (mflags & MATCH_ASSIGNRHS) ? PF_ASSIGNRHS : 0;
|
|
|
|
t = string_list_pos_params (pchar, save, qflags, pflags);
|
|
dispose_words(save);
|
|
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Allocate and return a new array element with index INDEX and value
|
|
* VALUE.
|
|
*/
|
|
ARRAY_ELEMENT *
|
|
array_create_element(indx, value)
|
|
arrayind_t indx;
|
|
char *value;
|
|
{
|
|
ARRAY_ELEMENT *r;
|
|
|
|
r = (ARRAY_ELEMENT *)xmalloc(sizeof(ARRAY_ELEMENT));
|
|
r->ind = indx;
|
|
r->value = value ? savestring(value) : (char *)NULL;
|
|
r->next = r->prev = (ARRAY_ELEMENT *) NULL;
|
|
return(r);
|
|
}
|
|
|
|
#ifdef INCLUDE_UNUSED
|
|
ARRAY_ELEMENT *
|
|
array_copy_element(ae)
|
|
ARRAY_ELEMENT *ae;
|
|
{
|
|
return(ae ? array_create_element(element_index(ae), element_value(ae))
|
|
: (ARRAY_ELEMENT *) NULL);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
array_dispose_element(ae)
|
|
ARRAY_ELEMENT *ae;
|
|
{
|
|
if (ae) {
|
|
FREE(ae->value);
|
|
free(ae);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a new element with index I and value V to array A (a[i] = v).
|
|
*/
|
|
int
|
|
array_insert(a, i, v)
|
|
ARRAY *a;
|
|
arrayind_t i;
|
|
char *v;
|
|
{
|
|
register ARRAY_ELEMENT *new, *ae, *start;
|
|
arrayind_t startind;
|
|
int direction;
|
|
|
|
if (a == 0)
|
|
return(-1);
|
|
new = array_create_element(i, v);
|
|
if (i > array_max_index(a)) {
|
|
/*
|
|
* Hook onto the end. This also works for an empty array.
|
|
* Fast path for the common case of allocating arrays
|
|
* sequentially.
|
|
*/
|
|
ADD_BEFORE(a->head, new);
|
|
a->max_index = i;
|
|
a->num_elements++;
|
|
SET_LASTREF(a, new);
|
|
return(0);
|
|
} else if (i < array_first_index(a)) {
|
|
/* Hook at the beginning */
|
|
ADD_AFTER(a->head, new);
|
|
a->num_elements++;
|
|
SET_LASTREF(a, new);
|
|
return(0);
|
|
}
|
|
#if OPTIMIZE_SEQUENTIAL_ARRAY_ASSIGNMENT
|
|
/*
|
|
* Otherwise we search for the spot to insert it. The lastref
|
|
* handle optimizes the case of sequential or almost-sequential
|
|
* assignments that are not at the end of the array.
|
|
*/
|
|
start = LASTREF(a);
|
|
/* Use same strategy as array_reference to avoid paying large penalty
|
|
for semi-random assignment pattern. */
|
|
startind = element_index(start);
|
|
if (i < startind/2) {
|
|
start = element_forw(a->head);
|
|
startind = element_index(start);
|
|
direction = 1;
|
|
} else if (i >= startind) {
|
|
direction = 1;
|
|
} else {
|
|
direction = -1;
|
|
}
|
|
#else
|
|
start = element_forw(ae->head);
|
|
startind = element_index(start);
|
|
direction = 1;
|
|
#endif
|
|
for (ae = start; ae != a->head; ) {
|
|
if (element_index(ae) == i) {
|
|
/*
|
|
* Replacing an existing element.
|
|
*/
|
|
free(element_value(ae));
|
|
/* Just swap in the new value */
|
|
ae->value = new->value;
|
|
new->value = 0;
|
|
array_dispose_element(new);
|
|
SET_LASTREF(a, ae);
|
|
return(0);
|
|
} else if (direction == 1 && element_index(ae) > i) {
|
|
ADD_BEFORE(ae, new);
|
|
a->num_elements++;
|
|
SET_LASTREF(a, new);
|
|
return(0);
|
|
} else if (direction == -1 && element_index(ae) < i) {
|
|
ADD_AFTER(ae, new);
|
|
a->num_elements++;
|
|
SET_LASTREF(a, new);
|
|
return(0);
|
|
}
|
|
ae = direction == 1 ? element_forw(ae) : element_back(ae);
|
|
}
|
|
array_dispose_element(new);
|
|
INVALIDATE_LASTREF(a);
|
|
return (-1); /* problem */
|
|
}
|
|
|
|
/*
|
|
* Delete the element with index I from array A and return it so the
|
|
* caller can dispose of it.
|
|
*/
|
|
ARRAY_ELEMENT *
|
|
array_remove(a, i)
|
|
ARRAY *a;
|
|
arrayind_t i;
|
|
{
|
|
register ARRAY_ELEMENT *ae, *start;
|
|
arrayind_t startind;
|
|
int direction;
|
|
|
|
if (a == 0 || array_empty(a))
|
|
return((ARRAY_ELEMENT *) NULL);
|
|
if (i > array_max_index(a) || i < array_first_index(a))
|
|
return((ARRAY_ELEMENT *)NULL); /* Keep roving pointer into array to optimize sequential access */
|
|
start = LASTREF(a);
|
|
/* Use same strategy as array_reference to avoid paying large penalty
|
|
for semi-random assignment pattern. */
|
|
startind = element_index(start);
|
|
if (i < startind/2) {
|
|
start = element_forw(a->head);
|
|
startind = element_index(start);
|
|
direction = 1;
|
|
} else if (i >= startind) {
|
|
direction = 1;
|
|
} else {
|
|
direction = -1;
|
|
}
|
|
for (ae = start; ae != a->head; ) {
|
|
if (element_index(ae) == i) {
|
|
ae->next->prev = ae->prev;
|
|
ae->prev->next = ae->next;
|
|
a->num_elements--;
|
|
if (i == array_max_index(a))
|
|
a->max_index = element_index(ae->prev);
|
|
#if 0
|
|
INVALIDATE_LASTREF(a);
|
|
#else
|
|
if (ae->next != a->head)
|
|
SET_LASTREF(a, ae->next);
|
|
else if (ae->prev != a->head)
|
|
SET_LASTREF(a, ae->prev);
|
|
else
|
|
INVALIDATE_LASTREF(a);
|
|
#endif
|
|
return(ae);
|
|
}
|
|
ae = (direction == 1) ? element_forw(ae) : element_back(ae);
|
|
if (direction == 1 && element_index(ae) > i)
|
|
break;
|
|
else if (direction == -1 && element_index(ae) < i)
|
|
break;
|
|
}
|
|
return((ARRAY_ELEMENT *) NULL);
|
|
}
|
|
|
|
/*
|
|
* Return the value of a[i].
|
|
*/
|
|
char *
|
|
array_reference(a, i)
|
|
ARRAY *a;
|
|
arrayind_t i;
|
|
{
|
|
register ARRAY_ELEMENT *ae, *start;
|
|
arrayind_t startind;
|
|
int direction;
|
|
|
|
if (a == 0 || array_empty(a))
|
|
return((char *) NULL);
|
|
if (i > array_max_index(a) || i < array_first_index(a))
|
|
return((char *)NULL); /* Keep roving pointer into array to optimize sequential access */
|
|
start = LASTREF(a); /* lastref pointer */
|
|
startind = element_index(start);
|
|
if (i < startind/2) { /* XXX - guess */
|
|
start = element_forw(a->head);
|
|
startind = element_index(start);
|
|
direction = 1;
|
|
} else if (i >= startind) {
|
|
direction = 1;
|
|
} else {
|
|
direction = -1;
|
|
}
|
|
for (ae = start; ae != a->head; ) {
|
|
if (element_index(ae) == i) {
|
|
SET_LASTREF(a, ae);
|
|
return(element_value(ae));
|
|
}
|
|
ae = (direction == 1) ? element_forw(ae) : element_back(ae);
|
|
/* Take advantage of index ordering to short-circuit */
|
|
/* If we don't find it, set the lastref pointer to the element
|
|
that's `closest', assuming that the unsuccessful reference
|
|
will quickly be followed by an assignment. No worse than
|
|
not changing it from the previous value or resetting it. */
|
|
if (direction == 1 && element_index(ae) > i) {
|
|
start = ae; /* use for SET_LASTREF below */
|
|
break;
|
|
} else if (direction == -1 && element_index(ae) < i) {
|
|
start = ae; /* use for SET_LASTREF below */
|
|
break;
|
|
}
|
|
}
|
|
#if 0
|
|
UNSET_LASTREF(a);
|
|
#else
|
|
SET_LASTREF(a, start);
|
|
#endif
|
|
return((char *) NULL);
|
|
}
|
|
|
|
/* Convenience routines for the shell to translate to and from the form used
|
|
by the rest of the code. */
|
|
|
|
WORD_LIST *
|
|
array_to_word_list(a)
|
|
ARRAY *a;
|
|
{
|
|
WORD_LIST *list;
|
|
ARRAY_ELEMENT *ae;
|
|
|
|
if (a == 0 || array_empty(a))
|
|
return((WORD_LIST *)NULL);
|
|
list = (WORD_LIST *)NULL;
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae))
|
|
list = make_word_list (make_bare_word(element_value(ae)), list);
|
|
return (REVERSE_LIST(list, WORD_LIST *));
|
|
}
|
|
|
|
ARRAY *
|
|
array_from_word_list (list)
|
|
WORD_LIST *list;
|
|
{
|
|
ARRAY *a;
|
|
|
|
if (list == 0)
|
|
return((ARRAY *)NULL);
|
|
a = array_create();
|
|
return (array_assign_list (a, list));
|
|
}
|
|
|
|
WORD_LIST *
|
|
array_keys_to_word_list(a)
|
|
ARRAY *a;
|
|
{
|
|
WORD_LIST *list;
|
|
ARRAY_ELEMENT *ae;
|
|
char *t;
|
|
|
|
if (a == 0 || array_empty(a))
|
|
return((WORD_LIST *)NULL);
|
|
list = (WORD_LIST *)NULL;
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
|
|
t = itos(element_index(ae));
|
|
list = make_word_list (make_bare_word(t), list);
|
|
free(t);
|
|
}
|
|
return (REVERSE_LIST(list, WORD_LIST *));
|
|
}
|
|
|
|
ARRAY *
|
|
array_assign_list (array, list)
|
|
ARRAY *array;
|
|
WORD_LIST *list;
|
|
{
|
|
register WORD_LIST *l;
|
|
register arrayind_t i;
|
|
|
|
for (l = list, i = 0; l; l = l->next, i++)
|
|
array_insert(array, i, l->word->word);
|
|
return array;
|
|
}
|
|
|
|
char **
|
|
array_to_argv (a, countp)
|
|
ARRAY *a;
|
|
int *countp;
|
|
{
|
|
char **ret, *t;
|
|
int i;
|
|
ARRAY_ELEMENT *ae;
|
|
|
|
if (a == 0 || array_empty(a)) {
|
|
if (countp)
|
|
*countp = 0;
|
|
return ((char **)NULL);
|
|
}
|
|
ret = strvec_create (array_num_elements (a) + 1);
|
|
i = 0;
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
|
|
t = element_value (ae);
|
|
if (t)
|
|
ret[i++] = savestring (t);
|
|
}
|
|
ret[i] = (char *)NULL;
|
|
if (countp)
|
|
*countp = i;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Return a string that is the concatenation of the elements in A from START
|
|
* to END, separated by SEP.
|
|
*/
|
|
static char *
|
|
array_to_string_internal (start, end, sep, quoted)
|
|
ARRAY_ELEMENT *start, *end;
|
|
char *sep;
|
|
int quoted;
|
|
{
|
|
char *result, *t;
|
|
ARRAY_ELEMENT *ae;
|
|
int slen, rsize, rlen, reg;
|
|
|
|
if (start == end) /* XXX - should not happen */
|
|
return ((char *)NULL);
|
|
|
|
slen = strlen(sep);
|
|
result = NULL;
|
|
for (rsize = rlen = 0, ae = start; ae != end; ae = element_forw(ae)) {
|
|
if (rsize == 0)
|
|
result = (char *)xmalloc (rsize = 64);
|
|
if (element_value(ae)) {
|
|
t = quoted ? quote_string(element_value(ae)) : element_value(ae);
|
|
reg = strlen(t);
|
|
RESIZE_MALLOCED_BUFFER (result, rlen, (reg + slen + 2),
|
|
rsize, rsize);
|
|
strcpy(result + rlen, t);
|
|
rlen += reg;
|
|
if (quoted)
|
|
free(t);
|
|
/*
|
|
* Add a separator only after non-null elements.
|
|
*/
|
|
if (element_forw(ae) != end) {
|
|
strcpy(result + rlen, sep);
|
|
rlen += slen;
|
|
}
|
|
}
|
|
}
|
|
if (result)
|
|
result[rlen] = '\0'; /* XXX */
|
|
return(result);
|
|
}
|
|
|
|
char *
|
|
array_to_kvpair (a, quoted)
|
|
ARRAY *a;
|
|
int quoted;
|
|
{
|
|
char *result, *valstr, *is;
|
|
char indstr[INT_STRLEN_BOUND(intmax_t) + 1];
|
|
ARRAY_ELEMENT *ae;
|
|
int rsize, rlen, elen;
|
|
|
|
if (a == 0 || array_empty (a))
|
|
return((char *)NULL);
|
|
|
|
result = (char *)xmalloc (rsize = 128);
|
|
result[rlen = 0] = '\0';
|
|
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
|
|
is = inttostr (element_index(ae), indstr, sizeof(indstr));
|
|
valstr = element_value (ae) ?
|
|
(ansic_shouldquote (element_value (ae)) ?
|
|
ansic_quote (element_value(ae), 0, (int *)0) :
|
|
sh_double_quote (element_value (ae)))
|
|
: (char *)NULL;
|
|
elen = STRLEN (is) + 8 + STRLEN (valstr);
|
|
RESIZE_MALLOCED_BUFFER (result, rlen, (elen + 1), rsize, rsize);
|
|
|
|
strcpy (result + rlen, is);
|
|
rlen += STRLEN (is);
|
|
result[rlen++] = ' ';
|
|
if (valstr) {
|
|
strcpy (result + rlen, valstr);
|
|
rlen += STRLEN (valstr);
|
|
} else {
|
|
strcpy (result + rlen, "\"\"");
|
|
rlen += 2;
|
|
}
|
|
|
|
if (element_forw(ae) != a->head)
|
|
result[rlen++] = ' ';
|
|
|
|
FREE (valstr);
|
|
}
|
|
RESIZE_MALLOCED_BUFFER (result, rlen, 1, rsize, 8);
|
|
result[rlen] = '\0';
|
|
|
|
if (quoted) {
|
|
/* This is not as efficient as it could be... */
|
|
valstr = sh_single_quote (result);
|
|
free (result);
|
|
result = valstr;
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
char *
|
|
array_to_assign (a, quoted)
|
|
ARRAY *a;
|
|
int quoted;
|
|
{
|
|
char *result, *valstr, *is;
|
|
char indstr[INT_STRLEN_BOUND(intmax_t) + 1];
|
|
ARRAY_ELEMENT *ae;
|
|
int rsize, rlen, elen;
|
|
|
|
if (a == 0 || array_empty (a))
|
|
return((char *)NULL);
|
|
|
|
result = (char *)xmalloc (rsize = 128);
|
|
result[0] = '(';
|
|
rlen = 1;
|
|
|
|
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
|
|
is = inttostr (element_index(ae), indstr, sizeof(indstr));
|
|
valstr = element_value (ae) ?
|
|
(ansic_shouldquote (element_value (ae)) ?
|
|
ansic_quote (element_value(ae), 0, (int *)0) :
|
|
sh_double_quote (element_value (ae)))
|
|
: (char *)NULL;
|
|
elen = STRLEN (is) + 8 + STRLEN (valstr);
|
|
RESIZE_MALLOCED_BUFFER (result, rlen, (elen + 1), rsize, rsize);
|
|
|
|
result[rlen++] = '[';
|
|
strcpy (result + rlen, is);
|
|
rlen += STRLEN (is);
|
|
result[rlen++] = ']';
|
|
result[rlen++] = '=';
|
|
if (valstr) {
|
|
strcpy (result + rlen, valstr);
|
|
rlen += STRLEN (valstr);
|
|
}
|
|
|
|
if (element_forw(ae) != a->head)
|
|
result[rlen++] = ' ';
|
|
|
|
FREE (valstr);
|
|
}
|
|
RESIZE_MALLOCED_BUFFER (result, rlen, 1, rsize, 8);
|
|
result[rlen++] = ')';
|
|
result[rlen] = '\0';
|
|
if (quoted) {
|
|
/* This is not as efficient as it could be... */
|
|
valstr = sh_single_quote (result);
|
|
free (result);
|
|
result = valstr;
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
char *
|
|
array_to_string (a, sep, quoted)
|
|
ARRAY *a;
|
|
char *sep;
|
|
int quoted;
|
|
{
|
|
if (a == 0)
|
|
return((char *)NULL);
|
|
if (array_empty(a))
|
|
return(savestring(""));
|
|
return (array_to_string_internal (element_forw(a->head), a->head, sep, quoted));
|
|
}
|
|
|
|
#if defined (INCLUDE_UNUSED) || defined (TEST_ARRAY)
|
|
/*
|
|
* Return an array consisting of elements in S, separated by SEP
|
|
*/
|
|
ARRAY *
|
|
array_from_string(s, sep)
|
|
char *s, *sep;
|
|
{
|
|
ARRAY *a;
|
|
WORD_LIST *w;
|
|
|
|
if (s == 0)
|
|
return((ARRAY *)NULL);
|
|
w = list_string (s, sep, 0);
|
|
if (w == 0)
|
|
return((ARRAY *)NULL);
|
|
a = array_from_word_list (w);
|
|
return (a);
|
|
}
|
|
#endif
|
|
|
|
#if defined (TEST_ARRAY)
|
|
/*
|
|
* To make a running version, compile -DTEST_ARRAY and link with:
|
|
* xmalloc.o syntax.o lib/malloc/libmalloc.a lib/sh/libsh.a
|
|
*/
|
|
int interrupt_immediately = 0;
|
|
|
|
int
|
|
signal_is_trapped(s)
|
|
int s;
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
fatal_error(const char *s, ...)
|
|
{
|
|
fprintf(stderr, "array_test: fatal memory error\n");
|
|
abort();
|
|
}
|
|
|
|
void
|
|
programming_error(const char *s, ...)
|
|
{
|
|
fprintf(stderr, "array_test: fatal programming error\n");
|
|
abort();
|
|
}
|
|
|
|
WORD_DESC *
|
|
make_bare_word (s)
|
|
const char *s;
|
|
{
|
|
WORD_DESC *w;
|
|
|
|
w = (WORD_DESC *)xmalloc(sizeof(WORD_DESC));
|
|
w->word = s ? savestring(s) : savestring ("");
|
|
w->flags = 0;
|
|
return w;
|
|
}
|
|
|
|
WORD_LIST *
|
|
make_word_list(x, l)
|
|
WORD_DESC *x;
|
|
WORD_LIST *l;
|
|
{
|
|
WORD_LIST *w;
|
|
|
|
w = (WORD_LIST *)xmalloc(sizeof(WORD_LIST));
|
|
w->word = x;
|
|
w->next = l;
|
|
return w;
|
|
}
|
|
|
|
WORD_LIST *
|
|
list_string(s, t, i)
|
|
char *s, *t;
|
|
int i;
|
|
{
|
|
char *r, *a;
|
|
WORD_LIST *wl;
|
|
|
|
if (s == 0)
|
|
return (WORD_LIST *)NULL;
|
|
r = savestring(s);
|
|
wl = (WORD_LIST *)NULL;
|
|
a = strtok(r, t);
|
|
while (a) {
|
|
wl = make_word_list (make_bare_word(a), wl);
|
|
a = strtok((char *)NULL, t);
|
|
}
|
|
return (REVERSE_LIST (wl, WORD_LIST *));
|
|
}
|
|
|
|
GENERIC_LIST *
|
|
list_reverse (list)
|
|
GENERIC_LIST *list;
|
|
{
|
|
register GENERIC_LIST *next, *prev;
|
|
|
|
for (prev = 0; list; ) {
|
|
next = list->next;
|
|
list->next = prev;
|
|
prev = list;
|
|
list = next;
|
|
}
|
|
return prev;
|
|
}
|
|
|
|
char *
|
|
pat_subst(s, t, u, i)
|
|
char *s, *t, *u;
|
|
int i;
|
|
{
|
|
return ((char *)NULL);
|
|
}
|
|
|
|
char *
|
|
quote_string(s)
|
|
char *s;
|
|
{
|
|
return savestring(s);
|
|
}
|
|
|
|
print_element(ae)
|
|
ARRAY_ELEMENT *ae;
|
|
{
|
|
char lbuf[INT_STRLEN_BOUND (intmax_t) + 1];
|
|
|
|
printf("array[%s] = %s\n",
|
|
inttostr (element_index(ae), lbuf, sizeof (lbuf)),
|
|
element_value(ae));
|
|
}
|
|
|
|
print_array(a)
|
|
ARRAY *a;
|
|
{
|
|
printf("\n");
|
|
array_walk(a, print_element, (void *)NULL);
|
|
}
|
|
|
|
main()
|
|
{
|
|
ARRAY *a, *new_a, *copy_of_a;
|
|
ARRAY_ELEMENT *ae, *aew;
|
|
char *s;
|
|
|
|
a = array_create();
|
|
array_insert(a, 1, "one");
|
|
array_insert(a, 7, "seven");
|
|
array_insert(a, 4, "four");
|
|
array_insert(a, 1029, "one thousand twenty-nine");
|
|
array_insert(a, 12, "twelve");
|
|
array_insert(a, 42, "forty-two");
|
|
print_array(a);
|
|
s = array_to_string (a, " ", 0);
|
|
printf("s = %s\n", s);
|
|
copy_of_a = array_from_string(s, " ");
|
|
printf("copy_of_a:");
|
|
print_array(copy_of_a);
|
|
array_dispose(copy_of_a);
|
|
printf("\n");
|
|
free(s);
|
|
ae = array_remove(a, 4);
|
|
array_dispose_element(ae);
|
|
ae = array_remove(a, 1029);
|
|
array_dispose_element(ae);
|
|
array_insert(a, 16, "sixteen");
|
|
print_array(a);
|
|
s = array_to_string (a, " ", 0);
|
|
printf("s = %s\n", s);
|
|
copy_of_a = array_from_string(s, " ");
|
|
printf("copy_of_a:");
|
|
print_array(copy_of_a);
|
|
array_dispose(copy_of_a);
|
|
printf("\n");
|
|
free(s);
|
|
array_insert(a, 2, "two");
|
|
array_insert(a, 1029, "new one thousand twenty-nine");
|
|
array_insert(a, 0, "zero");
|
|
array_insert(a, 134, "");
|
|
print_array(a);
|
|
s = array_to_string (a, ":", 0);
|
|
printf("s = %s\n", s);
|
|
copy_of_a = array_from_string(s, ":");
|
|
printf("copy_of_a:");
|
|
print_array(copy_of_a);
|
|
array_dispose(copy_of_a);
|
|
printf("\n");
|
|
free(s);
|
|
new_a = array_copy(a);
|
|
print_array(new_a);
|
|
s = array_to_string (new_a, ":", 0);
|
|
printf("s = %s\n", s);
|
|
copy_of_a = array_from_string(s, ":");
|
|
free(s);
|
|
printf("copy_of_a:");
|
|
print_array(copy_of_a);
|
|
array_shift(copy_of_a, 2, AS_DISPOSE);
|
|
printf("copy_of_a shifted by two:");
|
|
print_array(copy_of_a);
|
|
ae = array_shift(copy_of_a, 2, 0);
|
|
printf("copy_of_a shifted by two:");
|
|
print_array(copy_of_a);
|
|
for ( ; ae; ) {
|
|
aew = element_forw(ae);
|
|
array_dispose_element(ae);
|
|
ae = aew;
|
|
}
|
|
array_rshift(copy_of_a, 1, (char *)0);
|
|
printf("copy_of_a rshift by 1:");
|
|
print_array(copy_of_a);
|
|
array_rshift(copy_of_a, 2, "new element zero");
|
|
printf("copy_of_a rshift again by 2 with new element zero:");
|
|
print_array(copy_of_a);
|
|
s = array_to_assign(copy_of_a, 0);
|
|
printf("copy_of_a=%s\n", s);
|
|
free(s);
|
|
ae = array_shift(copy_of_a, array_num_elements(copy_of_a), 0);
|
|
for ( ; ae; ) {
|
|
aew = element_forw(ae);
|
|
array_dispose_element(ae);
|
|
ae = aew;
|
|
}
|
|
array_dispose(copy_of_a);
|
|
printf("\n");
|
|
array_dispose(a);
|
|
array_dispose(new_a);
|
|
}
|
|
|
|
#endif /* TEST_ARRAY */
|
|
#endif /* ARRAY_VARS */
|