hashtable: reimplement as open-addressed robin hood hashtable

This is mostly ported from Taisei Project
This commit is contained in:
Andrei Alexeyev 2024-09-18 16:27:20 +02:00
parent 34c6011360
commit caf21d05e0
No known key found for this signature in database
GPG Key ID: 72D26128040B9690
1 changed files with 331 additions and 133 deletions

View File

@ -18,26 +18,42 @@
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SDL_internal.h"
#include "SDL_hashtable.h"
// XXX: We can't use SDL_assert here because it's going to call into hashtable code
#include <assert.h>
#define HT_ASSERT(x) assert(x)
typedef struct SDL_HashItem
{
// TODO: Splitting off values into a separate array might be more cache-friendly
const void *key;
const void *value;
struct SDL_HashItem *next;
Uint32 hash;
Uint32 probe_len : 31;
Uint32 live : 1;
} SDL_HashItem;
// Must be a power of 2 >= sizeof(SDL_HashItem)
#define MAX_HASHITEM_SIZEOF 32u
SDL_COMPILE_TIME_ASSERT(sizeof_SDL_HashItem, sizeof(SDL_HashItem) <= MAX_HASHITEM_SIZEOF);
// Anything larger than this will cause integer overflows
#define MAX_HASHTABLE_SIZE (0x80000000u / (MAX_HASHITEM_SIZEOF))
struct SDL_HashTable
{
SDL_HashItem **table;
Uint32 table_len;
int hash_shift;
bool stackable;
void *data;
SDL_HashItem *table;
SDL_HashTable_HashFn hash;
SDL_HashTable_KeyMatchFn keymatch;
SDL_HashTable_NukeFn nuke;
void *data;
Uint32 hash_mask;
Uint32 max_probe_len;
Uint32 num_occupied_slots;
bool stackable;
};
SDL_HashTable *SDL_CreateHashTable(void *data, const Uint32 num_buckets, const SDL_HashTable_HashFn hashfn,
@ -47,26 +63,29 @@ SDL_HashTable *SDL_CreateHashTable(void *data, const Uint32 num_buckets, const S
{
SDL_HashTable *table;
// num_buckets must be a power of two so we can derive the bucket index with just a bitshift.
// Need at least two buckets, otherwise hash_shift would be 32, which is UB!
if ((num_buckets < 2) || !SDL_HasExactlyOneBitSet32(num_buckets)) {
// num_buckets must be a power of two so we can derive the bucket index with just a bit-and.
if ((num_buckets < 1) || !SDL_HasExactlyOneBitSet32(num_buckets)) {
SDL_SetError("num_buckets must be a power of two");
return NULL;
}
table = (SDL_HashTable *) SDL_calloc(1, sizeof (SDL_HashTable));
if (num_buckets > MAX_HASHTABLE_SIZE) {
SDL_SetError("num_buckets is too large");
return NULL;
}
table = (SDL_HashTable *)SDL_calloc(1, sizeof(SDL_HashTable));
if (!table) {
return NULL;
}
table->table = (SDL_HashItem **) SDL_calloc(num_buckets, sizeof (SDL_HashItem *));
table->table = (SDL_HashItem *)SDL_calloc(num_buckets, sizeof(SDL_HashItem));
if (!table->table) {
SDL_free(table);
return NULL;
}
table->table_len = num_buckets;
table->hash_shift = 32 - SDL_MostSignificantBitIndex32(num_buckets);
table->hash_mask = num_buckets - 1;
table->stackable = stackable;
table->data = data;
table->hash = hashfn;
@ -75,15 +94,197 @@ SDL_HashTable *SDL_CreateHashTable(void *data, const Uint32 num_buckets, const S
return table;
}
static SDL_INLINE Uint32 calc_hash(const SDL_HashTable *table, const void *key)
static SDL_INLINE Uint32 calc_hash(const SDL_HashTable *restrict table, const void *key)
{
// Mix the bits together, and use the highest bits as the bucket index.
const Uint32 BitMixer = 0x9E3779B1u;
return (table->hash(key, table->data) * BitMixer) >> table->hash_shift;
return table->hash(key, table->data) * BitMixer;
}
static SDL_INLINE Uint32 get_probe_length(Uint32 zero_idx, Uint32 actual_idx, Uint32 num_buckets)
{
// returns the probe sequence length from zero_idx to actual_idx
bool SDL_InsertIntoHashTable(SDL_HashTable *table, const void *key, const void *value)
if (actual_idx < zero_idx) {
return num_buckets - zero_idx + actual_idx;
}
return actual_idx - zero_idx;
}
static SDL_HashItem *find_item(const SDL_HashTable *restrict ht, const void *key, Uint32 hash, Uint32 *restrict i, Uint32 *restrict probe_len)
{
Uint32 hash_mask = ht->hash_mask;
Uint32 max_probe_len = ht->max_probe_len;
SDL_HashItem *table = ht->table;
for (;;) {
SDL_HashItem *item = table + *i;
Uint32 item_hash = item->hash;
if (!item->live) {
return NULL;
}
if (item_hash == hash && ht->keymatch(item->key, key, ht->data)) {
return item;
}
Uint32 item_probe_len = item->probe_len;
HT_ASSERT(item_probe_len == get_probe_length(item_hash & hash_mask, (Uint32)(item - table), hash_mask + 1));
if (*probe_len > item_probe_len) {
return NULL;
}
if (++*probe_len > max_probe_len) {
return NULL;
}
*i = (*i + 1) & hash_mask;
}
}
static SDL_HashItem *find_first_item(const SDL_HashTable *restrict ht, const void *key, Uint32 hash)
{
Uint32 i = hash & ht->hash_mask;
Uint32 probe_len = 0;
return find_item(ht, key, hash, &i, &probe_len);
}
static SDL_HashItem *insert_item(SDL_HashItem *restrict item_to_insert, SDL_HashItem *restrict table, Uint32 hash_mask, Uint32 *max_probe_len_ptr)
{
Uint32 idx = item_to_insert->hash & hash_mask;
SDL_HashItem temp_item, *target = NULL;
Uint32 num_buckets = hash_mask + 1;
for (;;) {
SDL_HashItem *candidate = table + idx;
if (!candidate->live) {
// Found an empty slot. Put it here and we're done.
*candidate = *item_to_insert;
if (target == NULL) {
target = candidate;
}
Uint32 probe_len = get_probe_length(candidate->hash & hash_mask, idx, num_buckets);
candidate->probe_len = probe_len;
if (*max_probe_len_ptr < probe_len) {
*max_probe_len_ptr = probe_len;
}
break;
}
Uint32 candidate_probe_len = candidate->probe_len;
HT_ASSERT(candidate_probe_len == get_probe_length(candidate->hash & hash_mask, idx, num_buckets));
Uint32 new_probe_len = get_probe_length(item_to_insert->hash & hash_mask, idx, num_buckets);
if (candidate_probe_len < new_probe_len) {
// Robin Hood hashing: the item at idx has a better probe length than our item would at this position.
// Evict it and put our item in its place, then continue looking for a new spot for the displaced item.
// This algorithm significantly reduces clustering in the table, making lookups take very few probes.
temp_item = *candidate;
*candidate = *item_to_insert;
if (target == NULL) {
target = candidate;
}
*item_to_insert = temp_item;
HT_ASSERT(new_probe_len == get_probe_length(candidate->hash & hash_mask, idx, num_buckets));
candidate->probe_len = new_probe_len;
if (*max_probe_len_ptr < new_probe_len) {
*max_probe_len_ptr = new_probe_len;
}
}
idx = (idx + 1) & hash_mask;
}
return target;
}
static void delete_item(SDL_HashTable *restrict ht, SDL_HashItem *item)
{
Uint32 hash_mask = ht->hash_mask;
SDL_HashItem *table = ht->table;
if (ht->nuke) {
ht->nuke(item->key, item->value, ht->data);
}
ht->num_occupied_slots--;
Uint32 idx = (Uint32)(item - ht->table);
for (;;) {
idx = (idx + 1) & hash_mask;
SDL_HashItem *next_item = table + idx;
if (next_item->probe_len < 1) {
SDL_zerop(item);
return;
}
*item = *next_item;
item->probe_len -= 1;
HT_ASSERT(item->probe_len < ht->max_probe_len);
item = next_item;
}
}
static bool resize(SDL_HashTable *restrict ht, Uint32 new_size)
{
SDL_HashItem *old_table = ht->table;
Uint32 old_size = ht->hash_mask + 1;
Uint32 new_hash_mask = new_size - 1;
SDL_HashItem *new_table = SDL_calloc(new_size, sizeof(*new_table));
if (!new_table) {
return false;
}
ht->max_probe_len = 0;
ht->hash_mask = new_hash_mask;
ht->table = new_table;
for (Uint32 i = 0; i < old_size; ++i) {
SDL_HashItem *item = old_table + i;
if (item->live) {
insert_item(item, new_table, new_hash_mask, &ht->max_probe_len);
}
}
SDL_free(old_table);
return true;
}
static bool maybe_resize(SDL_HashTable *restrict ht)
{
Uint32 capacity = ht->hash_mask + 1;
if (capacity >= MAX_HASHTABLE_SIZE) {
return false;
}
Uint32 max_load_factor = 217; // range: 0-255; 217 is roughly 85%
Uint32 resize_threshold = (max_load_factor * (Uint64)capacity) >> 8;
if (ht->num_occupied_slots > resize_threshold) {
return resize(ht, capacity * 2);
}
return true;
}
bool SDL_InsertIntoHashTable(SDL_HashTable *restrict table, const void *key, const void *value)
{
SDL_HashItem *item;
Uint32 hash;
@ -92,30 +293,33 @@ bool SDL_InsertIntoHashTable(SDL_HashTable *table, const void *key, const void *
return false;
}
if ( (!table->stackable) && (SDL_FindInHashTable(table, key, NULL)) ) {
return false;
}
// !!! FIXME: grow and rehash table if it gets too saturated.
item = (SDL_HashItem *) SDL_malloc(sizeof (SDL_HashItem));
if (!item) {
return false;
}
hash = calc_hash(table, key);
item = find_first_item(table, key, hash);
item->key = key;
item->value = value;
item->next = table->table[hash];
table->table[hash] = item;
if (item && !table->stackable) {
// TODO: Maybe allow overwrites? We could do it more efficiently here than unset followed by insert.
return false;
}
return true;
SDL_HashItem new_item;
new_item.key = key;
new_item.value = value;
new_item.hash = hash;
new_item.live = true;
table->num_occupied_slots++;
if (!maybe_resize(table)) {
table->num_occupied_slots--;
return false;
}
return insert_item(&new_item, table->table, table->hash_mask, &table->max_probe_len);
}
bool SDL_FindInHashTable(const SDL_HashTable *table, const void *key, const void **_value)
{
Uint32 hash;
void *data;
SDL_HashItem *i;
if (!table) {
@ -123,104 +327,101 @@ bool SDL_FindInHashTable(const SDL_HashTable *table, const void *key, const void
}
hash = calc_hash(table, key);
data = table->data;
i = find_first_item(table, key, hash);
*_value = i ? i->value : NULL;
for (i = table->table[hash]; i; i = i->next) {
if (table->keymatch(key, i->key, data)) {
if (_value) {
*_value = i->value;
}
return true;
}
}
return false;
return i;
}
bool SDL_RemoveFromHashTable(SDL_HashTable *table, const void *key)
{
Uint32 hash;
SDL_HashItem *item = NULL;
SDL_HashItem *prev = NULL;
void *data;
if (!table) {
return false;
}
hash = calc_hash(table, key);
data = table->data;
for (item = table->table[hash]; item; item = item->next) {
if (table->keymatch(key, item->key, data)) {
if (prev) {
prev->next = item->next;
} else {
table->table[hash] = item->next;
}
if (table->nuke) {
table->nuke(item->key, item->value, data);
}
SDL_free(item);
return true;
}
prev = item;
}
return false;
}
bool SDL_IterateHashTableKey(const SDL_HashTable *table, const void *key, const void **_value, void **iter)
{
SDL_HashItem *item;
if (!table) {
return false;
}
item = *iter ? ((SDL_HashItem *)*iter)->next : table->table[calc_hash(table, key)];
// FIXME: what to do for stacking hashtables?
// The original code removes just one item.
// This hashtable happens to preserve the insertion order of multi-value keys,
// so deleting the first one will always delete the least-recently inserted one.
// But maybe it makes more sense to remove all matching items?
while (item) {
if (table->keymatch(key, item->key, table->data)) {
*_value = item->value;
*iter = item;
return true;
}
item = item->next;
hash = calc_hash(table, key);
item = find_first_item(table, key, hash);
if (!item) {
return false;
}
// no more matches.
*_value = NULL;
*iter = NULL;
return false;
delete_item(table, item);
return true;
}
bool SDL_IterateHashTable(const SDL_HashTable *table, const void **_key, const void **_value, void **iter)
bool SDL_IterateHashTableKey(const SDL_HashTable *table, const void *key, const void **_value, void **iter)
{
SDL_HashItem *item = (SDL_HashItem *) *iter;
Uint32 idx = 0;
SDL_HashItem *item = (SDL_HashItem *)*iter;
if (!table) {
return false;
}
Uint32 i, probe_len, hash;
if (item) {
const SDL_HashItem *orig = item;
item = item->next;
if (!item) {
idx = calc_hash(table, orig->key) + 1; // !!! FIXME: we probably shouldn't rehash each time.
}
HT_ASSERT(item >= table->table);
HT_ASSERT(item < table->table + (table->hash_mask + 1));
hash = item->hash;
probe_len = item->probe_len + 1;
i = ((Uint32)(item - table->table) + 1) & table->hash_mask;
item = table->table + i;
} else {
hash = calc_hash(table, key);
i = hash & table->hash_mask;
probe_len = 0;
}
while (!item && (idx < table->table_len)) {
item = table->table[idx++]; // skip empty buckets...
item = find_item(table, key, hash, &i, &probe_len);
if (!item) {
*_value = NULL;
return false;
}
if (!item) { // no more matches?
*_value = item->value;
*iter = item;
return true;
}
bool SDL_IterateHashTable(const SDL_HashTable *table, const void **_key, const void **_value, void **iter)
{
SDL_HashItem *item = (SDL_HashItem *)*iter;
if (!table) {
return false;
}
if (!item) {
item = table->table;
} else {
item++;
}
HT_ASSERT(item >= table->table);
SDL_HashItem *end = table->table + (table->hash_mask + 1);
while (item < end && !item->live) {
++item;
}
HT_ASSERT(item <= end);
if (item == end) {
*_key = NULL;
*iter = NULL;
*_value = NULL;
return false;
}
@ -233,44 +434,41 @@ bool SDL_IterateHashTable(const SDL_HashTable *table, const void **_key, const v
bool SDL_HashTableEmpty(SDL_HashTable *table)
{
if (table) {
Uint32 i;
for (i = 0; i < table->table_len; i++) {
SDL_HashItem *item = table->table[i];
if (item) {
return false;
}
}
}
return true;
return !(table && table->num_occupied_slots);
}
void SDL_EmptyHashTable(SDL_HashTable *table)
static void nuke_all(SDL_HashTable *restrict table)
{
void *data = table->data;
SDL_HashItem *end = table->table + (table->hash_mask + 1);
SDL_HashItem *i;
for (i = table->table; i < end; ++i) {
if (i->live) {
table->nuke(i->key, i->value, data);
}
}
}
void SDL_EmptyHashTable(SDL_HashTable *restrict table)
{
if (table) {
void *data = table->data;
Uint32 i;
for (i = 0; i < table->table_len; i++) {
SDL_HashItem *item = table->table[i];
while (item) {
SDL_HashItem *next = item->next;
if (table->nuke) {
table->nuke(item->key, item->value, data);
}
SDL_free(item);
item = next;
}
table->table[i] = NULL;
if (table->nuke) {
nuke_all(table);
}
SDL_memset(table, 0, sizeof(*table) * (table->hash_mask + 1));
table->num_occupied_slots = 0;
}
}
void SDL_DestroyHashTable(SDL_HashTable *table)
{
if (table) {
SDL_EmptyHashTable(table);
if (table->nuke) {
nuke_all(table);
}
SDL_free(table->table);
SDL_free(table);
}
@ -298,13 +496,13 @@ bool SDL_KeyMatchString(const void *a, const void *b, void *data)
const char *b_string = (const char *)b;
if (a == b) {
return true; // same pointer, must match.
return true; // same pointer, must match.
} else if (!a || !b) {
return false; // one pointer is NULL (and first test shows they aren't the same pointer), must not match.
return false; // one pointer is NULL (and first test shows they aren't the same pointer), must not match.
} else if (a_string[0] != b_string[0]) {
return false; // we know they don't match
return false; // we know they don't match
}
return (SDL_strcmp(a_string, b_string) == 0); // Check against actual string contents.
return (SDL_strcmp(a_string, b_string) == 0); // Check against actual string contents.
}
// We assume we can fit the ID in the key directly