Moved Android sensor event handling to a separate thread

This makes it so you can interact with sensors on multiple threads, as long as only one thread initializes and cleans up the sensor subsystem.

This also has the benefit that sensor data is available as soon as possible.
This commit is contained in:
Sam Lantinga 2023-06-20 01:17:44 -07:00
parent 329e1b8b6a
commit 3ddbeab88f
2 changed files with 143 additions and 57 deletions

View File

@ -28,6 +28,7 @@
#include "SDL_androidsensor.h"
#include "../SDL_syssensor.h"
#include "../SDL_sensor_c.h"
#include "../../thread/SDL_systhread.h"
#ifndef LOOPER_ID_USER
#define LOOPER_ID_USER 3
@ -37,31 +38,116 @@ typedef struct
{
ASensorRef asensor;
SDL_SensorID instance_id;
ASensorEventQueue *event_queue;
SDL_Sensor *sensor;
} SDL_AndroidSensor;
typedef struct
{
SDL_AtomicInt running;
SDL_Thread *thread;
SDL_Semaphore *sem;
} SDL_AndroidSensorThreadContext;
static ASensorManager *SDL_sensor_manager;
static ALooper *SDL_sensor_looper;
static SDL_AndroidSensor *SDL_sensors;
static SDL_AndroidSensorThreadContext SDL_sensor_thread_context;
static SDL_Mutex *SDL_sensors_lock;
static SDL_AndroidSensor *SDL_sensors SDL_GUARDED_BY(SDL_sensors_lock);
static int SDL_sensors_count;
static int SDLCALL SDL_ANDROID_SensorThread(void *data)
{
SDL_AndroidSensorThreadContext *ctx = (SDL_AndroidSensorThreadContext *)data;
int i, events;
ASensorEvent event;
struct android_poll_source *source;
SDL_SetThreadPriority(SDL_THREAD_PRIORITY_HIGH);
SDL_sensor_looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
SDL_PostSemaphore(ctx->sem);
while (SDL_AtomicGet(&ctx->running)) {
Uint64 timestamp = SDL_GetTicksNS();
if (ALooper_pollAll(-1, NULL, &events, (void **)&source) == LOOPER_ID_USER) {
SDL_LockMutex(SDL_sensors_lock);
for (i = 0; i < SDL_sensors_count; ++i) {
if (!SDL_sensors[i].event_queue) {
continue;
}
SDL_zero(event);
while (ASensorEventQueue_getEvents(SDL_sensors[i].event_queue, &event, 1) > 0) {
SDL_SendSensorUpdate(timestamp, SDL_sensors[i].sensor, timestamp, event.data, SDL_arraysize(event.data));
}
}
SDL_UnlockMutex(SDL_sensors_lock);
}
}
SDL_sensor_looper = NULL;
return 0;
}
static void SDL_ANDROID_StopSensorThread(SDL_AndroidSensorThreadContext *ctx)
{
SDL_AtomicSet(&ctx->running, SDL_FALSE);
if (ctx->thread) {
int result;
if (SDL_sensor_looper) {
ALooper_wake(SDL_sensor_looper);
}
SDL_WaitThread(ctx->thread, &result);
ctx->thread = NULL;
}
if (ctx->sem) {
SDL_DestroySemaphore(ctx->sem);
ctx->sem = NULL;
}
}
static int SDL_ANDROID_StartSensorThread(SDL_AndroidSensorThreadContext *ctx)
{
ctx->sem = SDL_CreateSemaphore(0);
if (!ctx->sem) {
SDL_ANDROID_StopSensorThread(ctx);
return -1;
}
SDL_AtomicSet(&ctx->running, SDL_TRUE);
ctx->thread = SDL_CreateThreadInternal(SDL_ANDROID_SensorThread, "Sensors", 0, ctx);
if (!ctx->thread) {
SDL_ANDROID_StopSensorThread(ctx);
return -1;
}
/* Wait for the sensor thread to start */
SDL_WaitSemaphore(ctx->sem);
return 0;
}
static int SDL_ANDROID_SensorInit(void)
{
int i, sensors_count;
ASensorList sensors;
SDL_sensors_lock = SDL_CreateMutex();
if (!SDL_sensors_lock) {
return SDL_SetError("Couldn't create sensor lock");
}
SDL_sensor_manager = ASensorManager_getInstance();
if (SDL_sensor_manager == NULL) {
return SDL_SetError("Couldn't create sensor manager");
}
SDL_sensor_looper = ALooper_forThread();
if (SDL_sensor_looper == NULL) {
SDL_sensor_looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
if (SDL_sensor_looper == NULL) {
return SDL_SetError("Couldn't create sensor event loop");
}
}
/* FIXME: Is the sensor list dynamic? */
sensors_count = ASensorManager_getSensorList(SDL_sensor_manager, &sensors);
if (sensors_count > 0) {
@ -76,6 +162,10 @@ static int SDL_ANDROID_SensorInit(void)
}
SDL_sensors_count = sensors_count;
}
if (SDL_ANDROID_StartSensorThread(&SDL_sensor_thread_context) < 0) {
return -1;
}
return 0;
}
@ -117,72 +207,75 @@ static SDL_SensorID SDL_ANDROID_SensorGetDeviceInstanceID(int device_index)
static int SDL_ANDROID_SensorOpen(SDL_Sensor *sensor, int device_index)
{
struct sensor_hwdata *hwdata;
int delay_us, min_delay_us;
hwdata = (struct sensor_hwdata *)SDL_calloc(1, sizeof(*hwdata));
if (hwdata == NULL) {
return SDL_OutOfMemory();
}
SDL_LockMutex(SDL_sensors_lock);
{
SDL_sensors[device_index].sensor = sensor;
SDL_sensors[device_index].event_queue = ASensorManager_createEventQueue(SDL_sensor_manager, SDL_sensor_looper, LOOPER_ID_USER, NULL, NULL);
if (!SDL_sensors[device_index].event_queue) {
SDL_UnlockMutex(SDL_sensors_lock);
return SDL_SetError("Couldn't create sensor event queue");
}
hwdata->asensor = SDL_sensors[device_index].asensor;
hwdata->eventqueue = ASensorManager_createEventQueue(SDL_sensor_manager, SDL_sensor_looper, LOOPER_ID_USER, NULL, NULL);
if (!hwdata->eventqueue) {
SDL_free(hwdata);
return SDL_SetError("Couldn't create sensor event queue");
}
if (ASensorEventQueue_enableSensor(SDL_sensors[device_index].event_queue, SDL_sensors[device_index].asensor) < 0) {
ASensorManager_destroyEventQueue(SDL_sensor_manager, SDL_sensors[device_index].event_queue);
SDL_sensors[device_index].event_queue = NULL;
SDL_UnlockMutex(SDL_sensors_lock);
return SDL_SetError("Couldn't enable sensor");
}
if (ASensorEventQueue_enableSensor(hwdata->eventqueue, hwdata->asensor) < 0) {
ASensorManager_destroyEventQueue(SDL_sensor_manager, hwdata->eventqueue);
SDL_free(hwdata);
return SDL_SetError("Couldn't enable sensor");
/* Use 60 Hz update rate if possible */
/* FIXME: Maybe add a hint for this? */
delay_us = 1000000 / 60;
min_delay_us = ASensor_getMinDelay(SDL_sensors[device_index].asensor);
if (delay_us < min_delay_us) {
delay_us = min_delay_us;
}
ASensorEventQueue_setEventRate(SDL_sensors[device_index].event_queue, SDL_sensors[device_index].asensor, delay_us);
}
SDL_UnlockMutex(SDL_sensors_lock);
/* Use 60 Hz update rate if possible */
/* FIXME: Maybe add a hint for this? */
delay_us = 1000000 / 60;
min_delay_us = ASensor_getMinDelay(hwdata->asensor);
if (delay_us < min_delay_us) {
delay_us = min_delay_us;
}
ASensorEventQueue_setEventRate(hwdata->eventqueue, hwdata->asensor, delay_us);
sensor->hwdata = hwdata;
return 0;
}
static void SDL_ANDROID_SensorUpdate(SDL_Sensor *sensor)
{
int events;
ASensorEvent event;
struct android_poll_source *source;
Uint64 timestamp = SDL_GetTicksNS();
if (ALooper_pollAll(0, NULL, &events, (void **)&source) == LOOPER_ID_USER) {
SDL_zero(event);
while (ASensorEventQueue_getEvents(sensor->hwdata->eventqueue, &event, 1) > 0) {
SDL_SendSensorUpdate(timestamp, sensor, timestamp, event.data, SDL_arraysize(event.data));
}
}
}
static void SDL_ANDROID_SensorClose(SDL_Sensor *sensor)
{
if (sensor->hwdata) {
ASensorEventQueue_disableSensor(sensor->hwdata->eventqueue, sensor->hwdata->asensor);
ASensorManager_destroyEventQueue(SDL_sensor_manager, sensor->hwdata->eventqueue);
SDL_free(sensor->hwdata);
sensor->hwdata = NULL;
int i;
for (i = 0; i < SDL_sensors_count; ++i) {
if (SDL_sensors[i].sensor == sensor) {
SDL_LockMutex(SDL_sensors_lock);
{
ASensorEventQueue_disableSensor(SDL_sensors[i].event_queue, SDL_sensors[i].asensor);
ASensorManager_destroyEventQueue(SDL_sensor_manager, SDL_sensors[i].event_queue);
SDL_sensors[i].event_queue = NULL;
SDL_sensors[i].sensor = NULL;
}
SDL_UnlockMutex(SDL_sensors_lock);
break;
}
}
}
static void SDL_ANDROID_SensorQuit(void)
{
SDL_ANDROID_StopSensorThread(&SDL_sensor_thread_context);
if (SDL_sensors) {
SDL_free(SDL_sensors);
SDL_sensors = NULL;
SDL_sensors_count = 0;
}
if (SDL_sensors_lock) {
SDL_DestroyMutex(SDL_sensors_lock);
SDL_sensors_lock = NULL;
}
}
SDL_SensorDriver SDL_ANDROID_SensorDriver = {

View File

@ -19,10 +19,3 @@
3. This notice may not be removed or altered from any source distribution.
*/
#include "SDL_internal.h"
/* The private structure used to keep track of a sensor */
struct sensor_hwdata
{
ASensorRef asensor;
ASensorEventQueue *eventqueue;
};