tensorlayer3/tests/performance_test/vgg/tf2-eager.py

79 lines
2.2 KiB
Python

import time
import os
import psutil
from tensorflow.python.keras.applications import VGG16
import tensorflow as tf
from exp_config import random_input_generator, MONITOR_INTERVAL, NUM_ITERS, BATCH_SIZE, LERANING_RATE
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# get the whole model
vgg = VGG16(weights=None)
# system monitor
info = psutil.virtual_memory()
monitor_interval = MONITOR_INTERVAL
avg_mem_usage = 0
max_mem_usage = 0
count = 0
total_time = 0
# training setting
num_iter = NUM_ITERS
batch_size = BATCH_SIZE
train_weights = vgg.trainable_variables
optimizer = tf.optimizers.Adam(learning_rate=LERANING_RATE)
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# data generator
gen = random_input_generator(num_iter, batch_size)
# training function
def train_step(x_batch, y_batch):
# forward + backward
with tf.GradientTape() as tape:
## compute outputs
_logits = vgg(x_batch, training=True)
## compute loss and update model
_loss = loss_object(y_batch, _logits)
grad = tape.gradient(_loss, train_weights)
optimizer.apply_gradients(zip(grad, train_weights))
return _loss
# begin training
for idx, data in enumerate(gen):
start_time = time.time()
x_batch = tf.convert_to_tensor(data[0])
y_batch = tf.convert_to_tensor(data[1])
loss = train_step(x_batch, y_batch)
end_time = time.time()
consume_time = end_time - start_time
total_time += consume_time
if idx % monitor_interval == 0:
cur_usage = psutil.Process(os.getpid()).memory_info().rss
max_mem_usage = max(cur_usage, max_mem_usage)
avg_mem_usage += cur_usage
count += 1
tf.print(
"[*] {} iteration: memory usage {:.2f}MB, consume time {:.4f}s, loss {:.4f}".format(
idx, cur_usage / (1024 * 1024), consume_time, loss
)
)
print('consumed time:', total_time)
avg_mem_usage = avg_mem_usage / count / (1024 * 1024)
max_mem_usage = max_mem_usage / (1024 * 1024)
print('average memory usage: {:.2f}MB'.format(avg_mem_usage))
print('maximum memory usage: {:.2f}MB'.format(max_mem_usage))