tensorlayer3/tests/layers/test_layers_merge.py

79 lines
2.3 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorlayer as tl
from tests.utils import CustomTestCase
class Layer_Merge_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
pass
@classmethod
def tearDownClass(cls):
pass
def test_concat(self):
class CustomModel(tl.layers.Module):
def __init__(self):
super(CustomModel, self).__init__()
self.dense1 = tl.layers.Dense(in_channels=20, n_units=10, act=tl.ReLU, name='relu1_1')
self.dense2 = tl.layers.Dense(in_channels=20, n_units=10, act=tl.ReLU, name='relu2_1')
self.concat = tl.layers.Concat(concat_dim=1, name='concat_layer')
def forward(self, inputs):
d1 = self.dense1(inputs)
d2 = self.dense2(inputs)
outputs = self.concat([d1, d2])
return outputs
model = CustomModel()
model.set_train()
inputs = tl.ops.convert_to_tensor(np.random.random([4, 20]).astype(np.float32))
outputs = model(inputs)
print(model)
self.assertEqual(outputs.get_shape().as_list(), [4, 20])
def test_elementwise(self):
class CustomModel(tl.layers.Module):
def __init__(self):
super(CustomModel, self).__init__()
self.dense1 = tl.layers.Dense(in_channels=20, n_units=10, act=tl.ReLU, name='relu1_1')
self.dense2 = tl.layers.Dense(in_channels=20, n_units=10, act=tl.ReLU, name='relu2_1')
self.element = tl.layers.Elementwise(combine_fn=tl.minimum, name='minimum', act=None)
def forward(self, inputs):
d1 = self.dense1(inputs)
d2 = self.dense2(inputs)
outputs = self.element([d1, d2])
return outputs, d1, d2
model = CustomModel()
model.set_train()
inputs = tl.ops.convert_to_tensor(np.random.random([4, 20]).astype(np.float32))
outputs, d1, d2 = model(inputs)
print(model)
min = tl.ops.minimum(d1, d2)
self.assertEqual(outputs.get_shape().as_list(), [4, 10])
self.assertTrue(np.array_equal(min.numpy(), outputs.numpy()))
if __name__ == '__main__':
unittest.main()