tensorlayer3/tensorlayer/layers/stack.py

114 lines
3.1 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
__all__ = [
'Stack',
'UnStack',
]
class Stack(Module):
"""
The :class:`Stack` class is a layer for stacking a list of rank-R tensors into one rank-(R+1) tensor, see `tf.stack() <https://www.tensorflow.org/api_docs/python/tf/stack>`__.
Parameters
----------
axis : int
New dimension along which to stack.
name : str
A unique layer name.
Examples
---------
>>> import tensorlayer as tl
>>> ni = tl.layers.Input([10, 784], name='input')
>>> net1 = tl.layers.Dense(10, name='dense1')(ni)
>>> net2 = tl.layers.Dense(10, name='dense2')(ni)
>>> net3 = tl.layers.Dense(10, name='dense3')(ni)
>>> net = tl.layers.Stack(axis=1, name='stack')([net1, net2, net3])
(10, 3, 10)
"""
def __init__(
self,
axis=1,
name=None, #'stack',
):
super().__init__(name)
self.axis = axis
self.build(None)
self._built = True
logging.info("Stack %s: axis: %d" % (self.name, self.axis))
def __repr__(self):
s = '{classname}(axis={axis}'
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
self.stack = tl.ops.Stack(axis=self.axis)
def forward(self, inputs):
outputs = self.stack(inputs)
return outputs
class UnStack(Module):
"""
The :class:`UnStack` class is a layer for unstacking the given dimension of a rank-R tensor into rank-(R-1) tensors., see `tf.unstack() <https://www.tensorflow.org/api_docs/python/tf/unstack>`__.
Parameters
----------
num : int or None
The length of the dimension axis. Automatically inferred if None (the default).
axis : int
Dimension along which axis to concatenate.
name : str
A unique layer name.
Returns
-------
list of :class:`Layer`
The list of layer objects unstacked from the input.
Examples
--------
>>> ni = tl.layers.Input([4, 10], name='input')
>>> nn = tl.layers.Dense(n_units=5)(ni)
>>> nn = tl.layers.UnStack(axis=1)(nn) # unstack in channel axis
>>> len(nn) # 5
>>> nn[0].shape # (4,)
"""
def __init__(self, num=None, axis=0, name=None): #'unstack'):
super().__init__(name)
self.num = num
self.axis = axis
self.build(None)
self._built = True
logging.info("UnStack %s: num: %s axis: %d" % (self.name, self.num, self.axis))
def __repr__(self):
s = '{classname}(num={num}, axis={axis}'
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
self.unstack = tl.ops.Unstack(num=self.num, axis=self.axis)
def forward(self, inputs):
outputs = self.unstack(inputs)
return outputs