forked from TensorLayer/tensorlayer3
289 lines
11 KiB
Python
289 lines
11 KiB
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import tensorflow as tf
|
|
import colorsys, random, cv2
|
|
import numpy as np
|
|
from tensorlayer.visualize import save_image
|
|
|
|
|
|
def decode_tf(conv_output, output_size, NUM_CLASS, STRIDES, ANCHORS, i=0, XYSCALE=[1, 1, 1]):
|
|
batch_size = tf.shape(conv_output)[0]
|
|
conv_output = tf.reshape(conv_output, (batch_size, output_size, output_size, 3, 5 + NUM_CLASS))
|
|
|
|
conv_raw_dxdy, conv_raw_dwdh, conv_raw_conf, conv_raw_prob = tf.split(conv_output, (2, 2, 1, NUM_CLASS), axis=-1)
|
|
|
|
xy_grid = tf.meshgrid(tf.range(output_size), tf.range(output_size))
|
|
xy_grid = tf.expand_dims(tf.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2]
|
|
xy_grid = tf.tile(tf.expand_dims(xy_grid, axis=0), [batch_size, 1, 1, 3, 1])
|
|
|
|
xy_grid = tf.cast(xy_grid, tf.float32)
|
|
|
|
pred_xy = ((tf.sigmoid(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * \
|
|
STRIDES[i]
|
|
pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i])
|
|
pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1)
|
|
|
|
pred_conf = tf.sigmoid(conv_raw_conf)
|
|
pred_prob = tf.sigmoid(conv_raw_prob)
|
|
|
|
pred_prob = pred_conf * pred_prob
|
|
pred_prob = tf.reshape(pred_prob, (batch_size, -1, NUM_CLASS))
|
|
pred_xywh = tf.reshape(pred_xywh, (batch_size, -1, 4))
|
|
|
|
return pred_xywh, pred_prob
|
|
|
|
|
|
def decode(conv_output, output_size, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE=[1, 1, 1]):
|
|
return decode_tf(conv_output, output_size, NUM_CLASS, STRIDES, ANCHORS, i=i, XYSCALE=XYSCALE)
|
|
|
|
|
|
def filter_boxes(box_xywh, scores, score_threshold=0.4, input_shape=tf.constant([416, 416])):
|
|
scores_max = tf.math.reduce_max(scores, axis=-1)
|
|
|
|
mask = scores_max >= score_threshold
|
|
class_boxes = tf.boolean_mask(box_xywh, mask)
|
|
pred_conf = tf.boolean_mask(scores, mask)
|
|
class_boxes = tf.reshape(class_boxes, [tf.shape(scores)[0], -1, tf.shape(class_boxes)[-1]])
|
|
pred_conf = tf.reshape(pred_conf, [tf.shape(scores)[0], -1, tf.shape(pred_conf)[-1]])
|
|
|
|
box_xy, box_wh = tf.split(class_boxes, (2, 2), axis=-1)
|
|
|
|
input_shape = tf.cast(input_shape, dtype=tf.float32)
|
|
box_yx = box_xy[..., ::-1]
|
|
box_hw = box_wh[..., ::-1]
|
|
|
|
box_mins = (box_yx - (box_hw / 2.)) / input_shape
|
|
box_maxes = (box_yx + (box_hw / 2.)) / input_shape
|
|
boxes = tf.concat(
|
|
[
|
|
box_mins[..., 0:1], # y_min
|
|
box_mins[..., 1:2], # x_min
|
|
box_maxes[..., 0:1], # y_max
|
|
box_maxes[..., 1:2] # x_max
|
|
],
|
|
axis=-1
|
|
)
|
|
# return tf.concat([boxes, pred_conf], axis=-1)
|
|
return (boxes, pred_conf)
|
|
|
|
|
|
def read_class_names(class_file_name):
|
|
names = {}
|
|
with open(class_file_name, 'r') as data:
|
|
for ID, name in enumerate(data):
|
|
names[ID] = name.strip('\n')
|
|
return names
|
|
|
|
|
|
def draw_bbox(image, bboxes, show_label=True):
|
|
classes = read_class_names('model/coco.names')
|
|
num_classes = len(classes)
|
|
image_h, image_w, _ = image.shape
|
|
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
|
|
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
|
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
|
|
|
|
random.seed(0)
|
|
random.shuffle(colors)
|
|
random.seed(None)
|
|
|
|
out_boxes, out_scores, out_classes, num_boxes = bboxes
|
|
for i in range(num_boxes[0]):
|
|
if int(out_classes[0][i]) < 0 or int(out_classes[0][i]) > num_classes: continue
|
|
coor = out_boxes[0][i]
|
|
coor[0] = int(coor[0] * image_h)
|
|
coor[2] = int(coor[2] * image_h)
|
|
coor[1] = int(coor[1] * image_w)
|
|
coor[3] = int(coor[3] * image_w)
|
|
|
|
fontScale = 0.5
|
|
score = out_scores[0][i]
|
|
class_ind = int(out_classes[0][i])
|
|
bbox_color = colors[class_ind]
|
|
bbox_thick = int(0.6 * (image_h + image_w) / 600)
|
|
c1, c2 = (coor[1], coor[0]), (coor[3], coor[2])
|
|
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)
|
|
|
|
if show_label:
|
|
bbox_mess = '%s: %.2f' % (classes[class_ind], score)
|
|
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick // 2)[0]
|
|
c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)
|
|
cv2.rectangle(image, c1, (np.float32(c3[0]), np.float32(c3[1])), bbox_color, -1) #filled
|
|
|
|
cv2.putText(
|
|
image, bbox_mess, (c1[0], np.float32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX, fontScale, (0, 0, 0),
|
|
bbox_thick // 2, lineType=cv2.LINE_AA
|
|
)
|
|
return image
|
|
|
|
|
|
def get_anchors(anchors_path, tiny=False):
|
|
anchors = np.array(anchors_path)
|
|
if tiny:
|
|
return anchors.reshape(2, 3, 2)
|
|
else:
|
|
return anchors.reshape(3, 3, 2)
|
|
|
|
|
|
def decode_train(conv_output, output_size, NUM_CLASS, STRIDES, ANCHORS, i=0, XYSCALE=[1, 1, 1]):
|
|
conv_output = tf.reshape(conv_output, (tf.shape(conv_output)[0], output_size, output_size, 3, 5 + NUM_CLASS))
|
|
|
|
conv_raw_dxdy, conv_raw_dwdh, conv_raw_conf, conv_raw_prob = tf.split(conv_output, (2, 2, 1, NUM_CLASS), axis=-1)
|
|
|
|
xy_grid = tf.meshgrid(tf.range(output_size), tf.range(output_size))
|
|
xy_grid = tf.expand_dims(tf.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2]
|
|
xy_grid = tf.tile(tf.expand_dims(xy_grid, axis=0), [tf.shape(conv_output)[0], 1, 1, 3, 1])
|
|
|
|
xy_grid = tf.cast(xy_grid, tf.float32)
|
|
|
|
pred_xy = ((tf.sigmoid(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * \
|
|
STRIDES[i]
|
|
pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i])
|
|
pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1)
|
|
|
|
pred_conf = tf.sigmoid(conv_raw_conf)
|
|
pred_prob = tf.sigmoid(conv_raw_prob)
|
|
|
|
return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1)
|
|
|
|
|
|
def yolo4_input_processing(original_image):
|
|
image_data = cv2.resize(original_image, (416, 416))
|
|
image_data = image_data / 255.
|
|
images_data = []
|
|
for i in range(1):
|
|
images_data.append(image_data)
|
|
images_data = np.asarray(images_data).astype(np.float32)
|
|
batch_data = tf.constant(images_data)
|
|
return batch_data
|
|
|
|
|
|
def yolo4_output_processing(feature_maps):
|
|
STRIDES = [8, 16, 32]
|
|
ANCHORS = get_anchors([12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401])
|
|
NUM_CLASS = 80
|
|
XYSCALE = [1.2, 1.1, 1.05]
|
|
iou_threshold = 0.45
|
|
score_threshold = 0.25
|
|
|
|
bbox_tensors = []
|
|
prob_tensors = []
|
|
score_thres = 0.2
|
|
for i, fm in enumerate(feature_maps):
|
|
if i == 0:
|
|
output_tensors = decode(fm, 416 // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
|
|
elif i == 1:
|
|
output_tensors = decode(fm, 416 // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
|
|
else:
|
|
output_tensors = decode(fm, 416 // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
|
|
bbox_tensors.append(output_tensors[0])
|
|
prob_tensors.append(output_tensors[1])
|
|
pred_bbox = tf.concat(bbox_tensors, axis=1)
|
|
pred_prob = tf.concat(prob_tensors, axis=1)
|
|
boxes, pred_conf = filter_boxes(
|
|
pred_bbox, pred_prob, score_threshold=score_thres, input_shape=tf.constant([416, 416])
|
|
)
|
|
pred = {'concat': tf.concat([boxes, pred_conf], axis=-1)}
|
|
|
|
for key, value in pred.items():
|
|
boxes = value[:, :, 0:4]
|
|
pred_conf = value[:, :, 4:]
|
|
|
|
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
|
|
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
|
|
scores=tf.reshape(pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
|
|
max_output_size_per_class=50, max_total_size=50, iou_threshold=iou_threshold, score_threshold=score_threshold
|
|
)
|
|
output = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
|
|
return output
|
|
|
|
|
|
def result_to_json(image, pred_bbox):
|
|
image_h, image_w, _ = image.shape
|
|
out_boxes, out_scores, out_classes, num_boxes = pred_bbox
|
|
class_names = {}
|
|
json_result = []
|
|
with open('model/coco.names', 'r') as data:
|
|
for ID, name in enumerate(data):
|
|
class_names[ID] = name.strip('\n')
|
|
nums_class = len(class_names)
|
|
|
|
for i in range(num_boxes[0]):
|
|
if int(out_classes[0][i]) < 0 or int(out_classes[0][i]) > nums_class: continue
|
|
coor = out_boxes[0][i]
|
|
coor[0] = int(coor[0] * image_h)
|
|
coor[2] = int(coor[2] * image_h)
|
|
coor[1] = int(coor[1] * image_w)
|
|
coor[3] = int(coor[3] * image_w)
|
|
|
|
score = float(out_scores[0][i])
|
|
class_ind = int(out_classes[0][i])
|
|
bbox = np.array([coor[1], coor[0], coor[3], coor[2]]).tolist() # [x1,y1,x2,y2]
|
|
json_result.append({'image': None, 'category_id': class_ind, 'bbox': bbox, 'score': score})
|
|
|
|
return json_result
|
|
|
|
|
|
def draw_boxes_and_labels_to_image_with_json(image, json_result, class_list, save_name=None):
|
|
"""Draw bboxes and class labels on image. Return the image with bboxes.
|
|
|
|
Parameters
|
|
-----------
|
|
image : numpy.array
|
|
The RGB image [height, width, channel].
|
|
json_result : list of dict
|
|
The object detection result with json format.
|
|
classes_list : list of str
|
|
For converting ID to string on image.
|
|
save_name : None or str
|
|
The name of image file (i.e. image.png), if None, not to save image.
|
|
|
|
Returns
|
|
-------
|
|
numpy.array
|
|
The saved image.
|
|
|
|
References
|
|
-----------
|
|
- OpenCV rectangle and putText.
|
|
- `scikit-image <http://scikit-image.org/docs/dev/api/skimage.draw.html#skimage.draw.rectangle>`__.
|
|
|
|
"""
|
|
image_h, image_w, _ = image.shape
|
|
num_classes = len(class_list)
|
|
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
|
|
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
|
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
|
|
random.seed(0)
|
|
random.shuffle(colors)
|
|
random.seed(None)
|
|
bbox_thick = int(0.6 * (image_h + image_w) / 600)
|
|
fontScale = 0.5
|
|
|
|
for bbox_info in json_result:
|
|
image_name = bbox_info['image']
|
|
category_id = bbox_info['category_id']
|
|
if category_id < 0 or category_id > num_classes: continue
|
|
bbox = bbox_info['bbox'] # the order of coordinates is [x1, y2, x2, y2]
|
|
score = bbox_info['score']
|
|
|
|
bbox_color = colors[category_id]
|
|
c1, c2 = (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3]))
|
|
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)
|
|
|
|
bbox_mess = '%s: %.2f' % (class_list[category_id], score)
|
|
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick // 2)[0]
|
|
c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)
|
|
cv2.rectangle(image, c1, (np.float32(c3[0]), np.float32(c3[1])), bbox_color, -1)
|
|
|
|
cv2.putText(
|
|
image, bbox_mess, (c1[0], np.float32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX, fontScale, (0, 0, 0),
|
|
bbox_thick // 2, lineType=cv2.LINE_AA
|
|
)
|
|
|
|
if save_name is not None:
|
|
save_image(image, save_name)
|
|
|
|
return image
|