tensorlayer3/examples/basic_tutorials/tutorial_mnist_simple.py

78 lines
2.3 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
# The same set of code can switch the backend with one line
import os
# os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
os.environ['TL_BACKEND'] = 'paddle'
import tensorlayer as tl
from tensorlayer.layers import Module
from tensorlayer.layers import Dense, Dropout
from tensorlayer.dataflow import Dataset
X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784))
class mnistdataset(Dataset):
def __init__(self, data=X_train, label=y_train):
self.data = data
self.label = label
def __getitem__(self, index):
data = self.data[index].astype('float32')
label = self.label[index].astype('int64')
return data, label
def __len__(self):
return len(self.data)
class CustomModel(Module):
def __init__(self):
super(CustomModel, self).__init__()
self.dropout1 = Dropout(keep=0.8)
self.dense1 = Dense(n_units=800, act=tl.ReLU, in_channels=784)
self.dropout2 = Dropout(keep=0.8)
self.dense2 = Dense(n_units=800, act=tl.ReLU, in_channels=800)
self.dropout3 = Dropout(keep=0.8)
self.dense3 = Dense(n_units=10, act=tl.ReLU, in_channels=800)
def forward(self, x, foo=None):
z = self.dropout1(x)
z = self.dense1(z)
z = self.dropout2(z)
z = self.dense2(z)
z = self.dropout3(z)
out = self.dense3(z)
if foo is not None:
out = tl.ops.relu(out)
return out
MLP = CustomModel()
n_epoch = 50
batch_size = 128
print_freq = 2
train_weights = MLP.trainable_weights
optimizer = tl.optimizers.Momentum(0.05, 0.9)
metric = tl.metric.Accuracy()
loss_fn = tl.cost.softmax_cross_entropy_with_logits
train_dataset = mnistdataset(data=X_train, label=y_train)
train_dataset = tl.dataflow.FromGenerator(
train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label']
)
train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=batch_size, shuffle=True)
model = tl.models.Model(network=MLP, loss_fn=loss_fn, optimizer=optimizer, metrics=metric)
model.train(n_epoch=n_epoch, train_dataset=train_loader, print_freq=print_freq, print_train_batch=False)
model.save_weights('./model.npz', format='npz_dict')
model.load_weights('./model.npz', format='npz_dict')