tensorlayer3/docs/modules/layers.rst

670 lines
13 KiB
ReStructuredText

API - Layers
============
.. automodule:: tensorlayer.layers
.. -----------------------------------------------------------
.. Layer List
.. -----------------------------------------------------------
Layer list
----------
.. autosummary::
Module
SequentialLayer
Input
OneHot
Word2vecEmbedding
Embedding
AverageEmbedding
Dense
Dropout
GaussianNoise
DropconnectDense
UpSampling2d
DownSampling2d
Conv1d
Conv2d
Conv3d
DeConv2d
DeConv3d
DepthwiseConv2d
SeparableConv1d
SeparableConv2d
DeformableConv2d
GroupConv2d
PadLayer
PoolLayer
ZeroPad1d
ZeroPad2d
ZeroPad3d
MaxPool1d
MeanPool1d
MaxPool2d
MeanPool2d
MaxPool3d
MeanPool3d
GlobalMaxPool1d
GlobalMeanPool1d
GlobalMaxPool2d
GlobalMeanPool2d
GlobalMaxPool3d
GlobalMeanPool3d
CornerPool2d
SubpixelConv1d
SubpixelConv2d
SpatialTransformer2dAffine
transformer
batch_transformer
BatchNorm
BatchNorm1d
BatchNorm2d
BatchNorm3d
RNN
SimpleRNN
GRURNN
LSTMRNN
BiRNN
retrieve_seq_length_op
retrieve_seq_length_op2
retrieve_seq_length_op3
target_mask_op
Flatten
Reshape
Transpose
Shuffle
Lambda
Concat
Elementwise
ElementwiseLambda
ExpandDims
Tile
Stack
UnStack
Sign
Scale
BinaryDense
BinaryConv2d
TernaryDense
TernaryConv2d
DorefaDense
DorefaConv2d
PRelu
PRelu6
PTRelu6
flatten_reshape
initialize_rnn_state
list_remove_repeat
.. -----------------------------------------------------------
.. Basic Layers
.. -----------------------------------------------------------
Base Layer
-----------
Module
^^^^^^^^^^^^^^^^
.. autoclass:: Module
Sequential Layer
^^^^^^^^^^^^^^^^
.. autoclass:: SequentialLayer
.. -----------------------------------------------------------
.. Input Layer
.. -----------------------------------------------------------
Input Layers
---------------
Input Layer
^^^^^^^^^^^^^^^^
.. autofunction:: Input
.. -----------------------------------------------------------
.. Embedding Layers
.. -----------------------------------------------------------
One-hot Layer
^^^^^^^^^^^^^^^^^^^^
.. autoclass:: OneHot
Word2Vec Embedding Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: Word2vecEmbedding
Embedding Layer
^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: Embedding
Average Embedding Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: AverageEmbedding
.. -----------------------------------------------------------
.. Activation Layers
.. -----------------------------------------------------------
Activation Layers
---------------------------
PReLU Layer
^^^^^^^^^^^^^^^^^
.. autoclass:: PRelu
PReLU6 Layer
^^^^^^^^^^^^^^^^^^
.. autoclass:: PRelu6
PTReLU6 Layer
^^^^^^^^^^^^^^^^^^^
.. autoclass:: PTRelu6
.. -----------------------------------------------------------
.. Convolutional Layers
.. -----------------------------------------------------------
Convolutional Layers
---------------------
Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
Conv1d
"""""""""""""""""""""
.. autoclass:: Conv1d
Conv2d
"""""""""""""""""""""
.. autoclass:: Conv2d
Conv3d
"""""""""""""""""""""
.. autoclass:: Conv3d
Deconvolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
DeConv2d
"""""""""""""""""""""
.. autoclass:: DeConv2d
DeConv3d
"""""""""""""""""""""
.. autoclass:: DeConv3d
Deformable Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
DeformableConv2d
"""""""""""""""""""""
.. autoclass:: DeformableConv2d
Depthwise Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
DepthwiseConv2d
"""""""""""""""""""""
.. autoclass:: DepthwiseConv2d
Group Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
GroupConv2d
"""""""""""""""""""""
.. autoclass:: GroupConv2d
Separable Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
SeparableConv1d
"""""""""""""""""""""
.. autoclass:: SeparableConv1d
SeparableConv2d
"""""""""""""""""""""
.. autoclass:: SeparableConv2d
SubPixel Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
SubpixelConv1d
"""""""""""""""""""""
.. autoclass:: SubpixelConv1d
SubpixelConv2d
"""""""""""""""""""""
.. autoclass:: SubpixelConv2d
.. -----------------------------------------------------------
.. Dense Layers
.. -----------------------------------------------------------
Dense Layers
-------------
Dense Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: Dense
Drop Connect Dense Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: DropconnectDense
.. -----------------------------------------------------------
.. Dropout Layer
.. -----------------------------------------------------------
Dropout Layers
-------------------
.. autoclass:: Dropout
.. -----------------------------------------------------------
.. Extend Layers
.. -----------------------------------------------------------
Extend Layers
-------------------
Expand Dims Layer
^^^^^^^^^^^^^^^^^^^^
.. autoclass:: ExpandDims
Tile layer
^^^^^^^^^^^^^^^^^^^^
.. autoclass:: Tile
.. -----------------------------------------------------------
.. Image Resampling Layers
.. -----------------------------------------------------------
Image Resampling Layers
-------------------------
2D UpSampling
^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: UpSampling2d
2D DownSampling
^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: DownSampling2d
.. -----------------------------------------------------------
.. Lambda Layer
.. -----------------------------------------------------------
Lambda Layers
---------------
Lambda Layer
^^^^^^^^^^^^^^^^^^^
.. autoclass:: Lambda
ElementWise Lambda Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: ElementwiseLambda
.. -----------------------------------------------------------
.. Merge Layer
.. -----------------------------------------------------------
Merge Layers
---------------
Concat Layer
^^^^^^^^^^^^^^^^^^^
.. autoclass:: Concat
ElementWise Layer
^^^^^^^^^^^^^^^^^^^
.. autoclass:: Elementwise
.. -----------------------------------------------------------
.. Noise Layers
.. -----------------------------------------------------------
Noise Layer
---------------
.. autoclass:: GaussianNoise
.. -----------------------------------------------------------
.. Normalization Layers
.. -----------------------------------------------------------
Normalization Layers
--------------------
Batch Normalization
^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: BatchNorm
Batch Normalization 1D
^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: BatchNorm1d
Batch Normalization 2D
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: BatchNorm2d
Batch Normalization 3D
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: BatchNorm3d
.. -----------------------------------------------------------
.. Padding Layers
.. -----------------------------------------------------------
Padding Layers
------------------------
Pad Layer (Expert API)
^^^^^^^^^^^^^^^^^^^^^^^^^
Padding layer for any modes.
.. autoclass:: PadLayer
1D Zero padding
^^^^^^^^^^^^^^^^^^^
.. autoclass:: ZeroPad1d
2D Zero padding
^^^^^^^^^^^^^^^^^^^
.. autoclass:: ZeroPad2d
3D Zero padding
^^^^^^^^^^^^^^^^^^^
.. autoclass:: ZeroPad3d
.. -----------------------------------------------------------
.. Pooling Layers
.. -----------------------------------------------------------
Pooling Layers
------------------------
Pool Layer (Expert API)
^^^^^^^^^^^^^^^^^^^^^^^^^
Pooling layer for any dimensions and any pooling functions.
.. autoclass:: PoolLayer
1D Max pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MaxPool1d
1D Mean pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MeanPool1d
2D Max pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MaxPool2d
2D Mean pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MeanPool2d
3D Max pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MaxPool3d
3D Mean pooling
^^^^^^^^^^^^^^^^^^^
.. autoclass:: MeanPool3d
1D Global Max pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMaxPool1d
1D Global Mean pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMeanPool1d
2D Global Max pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMaxPool2d
2D Global Mean pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMeanPool2d
3D Global Max pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMaxPool3d
3D Global Mean pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GlobalMeanPool3d
2D Corner pooling
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: CornerPool2d
.. -----------------------------------------------------------
.. Quantized Layers
.. -----------------------------------------------------------
Quantized Nets
------------------
This is an experimental API package for building Quantized Neural Networks. We are using matrix multiplication rather than add-minus and bit-count operation at the moment. Therefore, these APIs would not speed up the inferencing, for production, you can train model via TensorLayer and deploy the model into other customized C/C++ implementation (We probably provide users an extra C/C++ binary net framework that can load model from TensorLayer).
Note that, these experimental APIs can be changed in the future.
Sign
^^^^^^^^^^^^^^
.. autoclass:: Sign
Scale
^^^^^^^^^^^^^^
.. autoclass:: Scale
Binary Dense Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: BinaryDense
Binary (De)Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
BinaryConv2d
"""""""""""""""""""""
.. autoclass:: BinaryConv2d
Ternary Dense Layer
^^^^^^^^^^^^^^^^^^^^^^^^^^
TernaryDense
"""""""""""""""""""""
.. autoclass:: TernaryDense
Ternary Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
TernaryConv2d
"""""""""""""""""""""
.. autoclass:: TernaryConv2d
DoReFa Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
DorefaConv2d
"""""""""""""""""""""
.. autoclass:: DorefaConv2d
DoReFa Convolutions
^^^^^^^^^^^^^^^^^^^^^^^^^^
DorefaConv2d
"""""""""""""""""""""
.. autoclass:: DorefaConv2d
.. -----------------------------------------------------------
.. Recurrent Layers
.. -----------------------------------------------------------
Recurrent Layers
---------------------
Common Recurrent layer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All recurrent layers can implement any type of RNN cell by feeding different cell function (LSTM, GRU etc).
RNN layer
""""""""""""""""""""""""""
.. autoclass:: RNN
RNN layer with Simple RNN Cell
""""""""""""""""""""""""""""""""""
.. autoclass:: SimpleRNN
RNN layer with GRU Cell
""""""""""""""""""""""""""""""""""
.. autoclass:: GRURNN
RNN layer with LSTM Cell
""""""""""""""""""""""""""""""""""
.. autoclass:: LSTMRNN
Bidirectional layer
"""""""""""""""""""""""""""""""""
.. autoclass:: BiRNN
Advanced Ops for Dynamic RNN
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
These operations usually be used inside Dynamic RNN layer, they can
compute the sequence lengths for different situation and get the last RNN outputs by indexing.
Compute Sequence length 1
""""""""""""""""""""""""""
.. autofunction:: retrieve_seq_length_op
Compute Sequence length 2
"""""""""""""""""""""""""""""
.. autofunction:: retrieve_seq_length_op2
Compute Sequence length 3
""""""""""""""""""""""""""""
.. autofunction:: retrieve_seq_length_op3
Compute mask of the target sequence
"""""""""""""""""""""""""""""""""""""""
.. autofunction:: target_mask_op
.. -----------------------------------------------------------
.. Shape Layers
.. -----------------------------------------------------------
Shape Layers
------------
Flatten Layer
^^^^^^^^^^^^^^^
.. autoclass:: Flatten
Reshape Layer
^^^^^^^^^^^^^^^
.. autoclass:: Reshape
Transpose Layer
^^^^^^^^^^^^^^^^^
.. autoclass:: Transpose
Shuffle Layer
^^^^^^^^^^^^^^^^^
.. autoclass:: Shuffle
.. -----------------------------------------------------------
.. Spatial Transformer Layers
.. -----------------------------------------------------------
Spatial Transformer
-----------------------
2D Affine Transformation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: SpatialTransformer2dAffine
2D Affine Transformation function
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: transformer
Batch 2D Affine Transformation function
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: batch_transformer
.. -----------------------------------------------------------
.. Stack Layers
.. -----------------------------------------------------------
Stack Layer
-------------
Stack Layer
^^^^^^^^^^^^^^
.. autoclass:: Stack
Unstack Layer
^^^^^^^^^^^^^^^
.. autoclass:: UnStack
.. -----------------------------------------------------------
.. Helper Functions
.. -----------------------------------------------------------
Helper Functions
------------------------
Flatten tensor
^^^^^^^^^^^^^^^^^
.. autofunction:: flatten_reshape
Initialize RNN state
^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: initialize_rnn_state
Remove repeated items in a list
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: list_remove_repeat