tensorlayer3/proposal_top_layer.py

83 lines
2.8 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from config import cfg
from bbox_transform import bbox_transform_inv, clip_boxes, bbox_transform_inv_tf, clip_boxes_tf
import os
os.environ['TL_BACKEND'] = 'tensorflow'
import tensorflow as tf
import numpy as np
import numpy.random as npr
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
"""A layer that just selects the top region proposals
without using non-maximal suppression,
For details please see the technical report
"""
rpn_top_n = cfg.TEST.RPN_TOP_N
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
scores = scores.reshape((-1, 1))
length = scores.shape[0]
if length < rpn_top_n:
# Random selection, maybe unnecessary and loses good proposals
# But such case rarely happens
top_inds = npr.choice(length, size=rpn_top_n, replace=True)
else:
top_inds = scores.argsort(0)[::-1]
top_inds = top_inds[:rpn_top_n]
top_inds = top_inds.reshape(rpn_top_n, )
# Do the selection here
anchors = anchors[top_inds, :]
rpn_bbox_pred = rpn_bbox_pred[top_inds, :]
scores = scores[top_inds]
# Convert anchors into proposals via bbox transformations
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
# Clip predicted boxes to image
proposals = clip_boxes(proposals, im_info[:2])
# Output rois blob
# Our RPN implementation only supports a single input image, so all
# batch inds are 0
batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
return blob, scores
def proposal_top_layer_tf(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
"""A layer that just selects the top region proposals
without using non-maximal suppression,
For details please see the technical report
"""
rpn_top_n = cfg.TEST.RPN_TOP_N
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = tf.reshape(rpn_bbox_pred, shape=(-1, 4))
scores = tf.reshape(scores, shape=(-1,))
# Do the selection here
top_scores, top_inds = tf.nn.top_k(scores, k=rpn_top_n)
top_scores = tf.reshape(top_scores, shape=(-1, 1))
top_anchors = tf.gather(anchors, top_inds)
top_rpn_bbox = tf.gather(rpn_bbox_pred, top_inds)
proposals = bbox_transform_inv_tf(top_anchors, top_rpn_bbox)
# Clip predicted boxes to image
proposals = clip_boxes_tf(proposals, im_info[:2])
# Output rois blob
# Our RPN implementation only supports a single input image, so all
# batch inds are 0
proposals = tf.to_float(proposals)
batch_inds = tf.zeros((rpn_top_n, 1))
blob = tf.concat([batch_inds, proposals], 1)
return blob, top_scores